Condition of coincidence between greedy approximations and $m$-term ones
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 18-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give conditions on a set $M$ in a Banach space that are necessary or sufficient for the following: every element which is a sum of $n$ elements from $M$ has zero $n$-th greedy residual under greedy approximation with respect to $M$.
@article{VMUMM_2022_2_a1,
     author = {K. S. Vishnevetskiy},
     title = {Condition of coincidence between greedy approximations and $m$-term ones},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {18--23},
     year = {2022},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a1/}
}
TY  - JOUR
AU  - K. S. Vishnevetskiy
TI  - Condition of coincidence between greedy approximations and $m$-term ones
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 18
EP  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a1/
LA  - ru
ID  - VMUMM_2022_2_a1
ER  - 
%0 Journal Article
%A K. S. Vishnevetskiy
%T Condition of coincidence between greedy approximations and $m$-term ones
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 18-23
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a1/
%G ru
%F VMUMM_2022_2_a1
K. S. Vishnevetskiy. Condition of coincidence between greedy approximations and $m$-term ones. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 18-23. http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a1/

[1] Temlyakov V., Greedy approximation, Cambridge University Press, Cambridge, 2011 | MR | Zbl

[2] Borodin P. A., “Zhadnye priblizheniya proizvolnym mnozhestvom”, Izv. RAN. Ser. matem., 84:2 (2020), 43–59 | MR | Zbl

[3] Brøndsted A., An introduction to convex polytopes, Springer-Verlag, N. Y., 1983 | MR