Condition of coincidence between greedy approximations and $m$-term ones
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 18-23
Voir la notice de l'article provenant de la source Math-Net.Ru
We give conditions on a set $M$ in a Banach space that are necessary or sufficient for the following: every element which is a sum of $n$ elements from $M$ has zero $n$-th greedy residual under greedy approximation with respect to $M$.
@article{VMUMM_2022_2_a1,
author = {K. S. Vishnevetskiy},
title = {Condition of coincidence between greedy approximations and $m$-term ones},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {18--23},
publisher = {mathdoc},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a1/}
}
TY - JOUR AU - K. S. Vishnevetskiy TI - Condition of coincidence between greedy approximations and $m$-term ones JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 18 EP - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a1/ LA - ru ID - VMUMM_2022_2_a1 ER -
K. S. Vishnevetskiy. Condition of coincidence between greedy approximations and $m$-term ones. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 18-23. http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a1/