Condition of coincidence between greedy approximations and $m$-term ones
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 18-23
Cet article a éte moissonné depuis la source Math-Net.Ru
We give conditions on a set $M$ in a Banach space that are necessary or sufficient for the following: every element which is a sum of $n$ elements from $M$ has zero $n$-th greedy residual under greedy approximation with respect to $M$.
@article{VMUMM_2022_2_a1,
author = {K. S. Vishnevetskiy},
title = {Condition of coincidence between greedy approximations and $m$-term ones},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {18--23},
year = {2022},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a1/}
}
K. S. Vishnevetskiy. Condition of coincidence between greedy approximations and $m$-term ones. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 18-23. http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a1/
[1] Temlyakov V., Greedy approximation, Cambridge University Press, Cambridge, 2011 | MR | Zbl
[2] Borodin P. A., “Zhadnye priblizheniya proizvolnym mnozhestvom”, Izv. RAN. Ser. matem., 84:2 (2020), 43–59 | MR | Zbl
[3] Brøndsted A., An introduction to convex polytopes, Springer-Verlag, N. Y., 1983 | MR