@article{VMUMM_2022_1_a8,
author = {A. P. Kombarov},
title = {Weak normality forms outside of a diagonal},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {65--67},
year = {2022},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a8/}
}
A. P. Kombarov. Weak normality forms outside of a diagonal. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 65-67. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a8/
[1] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[2] Arhangel'skii A. V., Kombarov A. P., “On $\nabla$-normal spaces”, Topol. Appl., 35 (1990), 121–126 | DOI | MR | Zbl
[3] Malykhin D. V., “Schetno-kompaktnoe $\nabla$-normalnoe prostranstvo imeet schetnyi kharakter”, Vestn. Mosk. un-ta. Matem. Mekhan., 1997, no. 5, 31–33 | Zbl
[4] Nyikos P., “Problem section: Problem B”, Topol. Proc., 9 (1984), 367–367 | Zbl
[5] Ivanova V. M., “K teorii prostranstv podmnozhestv”, Dokl. AN SSSR, 101 (1955), 601–603 | Zbl
[6] Kemoto N., “Normality and countable paracompactness of hyperspaces of ordinals”, Topol. Appl., 154 (2007), 358–363 | DOI | MR | Zbl
[7] Kombarov A. P., “O dvukh svoistvakh tipa normalnosti”, Matem. zametki, 94:3 (2013), 473–476 | Zbl
[8] Eisworth T., Nyikos P., “First countable, countably compact spaces and the continuum hypothesis”, Trans. Amer. Math. Soc., 357 (2005), 4269–4399 | DOI | MR
[9] Kombarov A. P., “On $F_{\sigma}$-${\delta}$-normality and hereditary ${\delta}$-normality”, Topol. Appl., 91 (1999), 221–226 | DOI | MR | Zbl
[10] Kyunen K., “Kombinatorika”, Spravochnaya kniga po matematicheskoi logike, v. II, Teoriya mnozhestv, M., 1982
[11] Arkhangelskii A. V., “Stroenie i klassifikatsiya topologicheskikh prostranstv i kardinalnye invarianty”, Uspekhi matem. nauk, 33:6 (1978), 29–84 | MR