Influence of flow velocity variability on pipeline stability boundaries
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 48-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The parametric oscillations of a classical system under nonconservative loading — a flexible pipeline with a flowing liquid — are considered. The parametric effect on the system is determined by the variability of the fluid flow rate. The stability of the rectilinear form of the pipeline equilibrium according to the Floquet–Lyapunov theory is investigated by the method of monodromy matrices. Under the assumption of a harmonic deviation of the flow velocity from a certain constant value, in particular, the amplitude and frequency, the main attention is paid to the study of the influence of the characteristics of the parametric influence on the position of the stability boundary of the rectilinear form of the pipeline equilibrium.
@article{VMUMM_2022_1_a5,
     author = {V. P. Radin and V. P. Chirkov and O. V. Novikova and A. V. Shchugorev and V. N. Shchugorev},
     title = {Influence of flow velocity variability on pipeline stability boundaries},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--54},
     year = {2022},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a5/}
}
TY  - JOUR
AU  - V. P. Radin
AU  - V. P. Chirkov
AU  - O. V. Novikova
AU  - A. V. Shchugorev
AU  - V. N. Shchugorev
TI  - Influence of flow velocity variability on pipeline stability boundaries
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 48
EP  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a5/
LA  - ru
ID  - VMUMM_2022_1_a5
ER  - 
%0 Journal Article
%A V. P. Radin
%A V. P. Chirkov
%A O. V. Novikova
%A A. V. Shchugorev
%A V. N. Shchugorev
%T Influence of flow velocity variability on pipeline stability boundaries
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 48-54
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a5/
%G ru
%F VMUMM_2022_1_a5
V. P. Radin; V. P. Chirkov; O. V. Novikova; A. V. Shchugorev; V. N. Shchugorev. Influence of flow velocity variability on pipeline stability boundaries. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 48-54. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a5/

[1] Paidoussis M. P., “Dynamics of tubular cantilevers conveying fluid”, J. Mech. Eng. Sci., 612:2 (1970), 85–103 | DOI

[2] Elishakoff I., Vittori P., “A paradox of non-monotonicity in stability of pipes conveying fluid”, Theor. and Appl. Mech., 32 (2005), 235–282 | DOI | MR | Zbl

[3] Marzani A., Mazzotti M., Viola E., Vittori P., Elishakoff I., “FEM formulation for dynamic instability of fluid-conveying pipe on nonuniform elastic foundation”, Mechanics Based Design of Structures and Machines: Int. J., 40:1 (2012), 83–95 | DOI | MR

[4] Bahaadini R., Hosseini M., “Flow-induced and mechanical stability of cantilevercarbon nanotubes subjected to an axial compressive load”, Appl. Math. Model., 59 (2018), 597–613 | DOI | MR | Zbl

[5] Wang L., Dai H. L., Ni Q., “Nonconservative pipes conveying fluid: evolution of mode shapes with increasing flow velocity”, J. Vibration and Control, 21:6 (2015), 3359–3367 | DOI

[6] Bahaadini R., Mohammad R. D., Mohammad H., Zahra K., “Stability analysis of composite thin-walled pipes conveying fluid”, Ocean Eng., 160 (2018), 311–323 | DOI

[7] Tornabene F., Marzani A., Viola E., Elishakoff I., “Critical flow speeds of pipes conveying fluid using the generalized differential quadrature method”, Adv. Theor. Appl. Mech., 3 (2010), 121–138 | Zbl

[8] Bolotin V. V., Nekonservativnye zadachi teorii uprugoi ustoichivosti, Fizmatgiz, M., 1961

[9] Vasina V. N., “Parametricheskie kolebaniya uchastka truboprovoda s protekayuschei zhidkostyu”, Vestn. MEI, 2007, no. 1, 5–12 | MR

[10] Bolotin V. V., Chirkov V. P., Radin V. P., Vasina V. N., “Parametricheskie kolebaniya v nekonservativnykh sistemakh”, Problemy prikladnoi mekhaniki, dinamiki i prochnosti mashin, Sb. statei, Izd-vo MGTU im. N.E. Baumana, M., 2005, 22–31

[11] Radin V. P., Chirkov V. P., Schugorev A. V., Schugorev V. N., “Ustoichivost i parametricheskie rezonansy v sisteme Reuta”, Mashinostroenie: Spravochnik, 2018, no. 11, 20–27

[12] Radin V. P., Chirkov V. P., Schugorev A. V., Schugorev V. N., Novikova O. V., “Dinamicheskaya ustoichivost truboprovoda s protekayuschei po nemu zhidkostyu”, Izv. vuzov. Mashinostroenie, 2020, no. 11, 3–12 | DOI

[13] V.V. Bolotin (red.), Vibratsii v tekhnike: Spravochnik, v. 1, Kolebaniya lineinykh sistem, Mashinostroenie, M., 1999

[14] Petrovskii A. V., Nelineinaya dinamika i ustoichivost nekonservativnykh sistem, Izd-vo MEI, M., 2003