Variation principles of moment-membrane theory of shells
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 38-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper assumptions are formulated and on the basis of the moment theory of elasticity with independent fields of displacements and rotations general variation principle of Hu–Washizu type is established and basic equations with boundary conditions of the moment-membrane theory of shells are set out. For the moment-membrane theory of shells particular variation principles of Lagrange and Castigliano type are proved, equations of continuity of deformations of the middle surface of the shell are derived.
@article{VMUMM_2022_1_a4,
     author = {C. H. Sarkysyan},
     title = {Variation principles of moment-membrane theory of shells},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {38--47},
     year = {2022},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a4/}
}
TY  - JOUR
AU  - C. H. Sarkysyan
TI  - Variation principles of moment-membrane theory of shells
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 38
EP  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a4/
LA  - ru
ID  - VMUMM_2022_1_a4
ER  - 
%0 Journal Article
%A C. H. Sarkysyan
%T Variation principles of moment-membrane theory of shells
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 38-47
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a4/
%G ru
%F VMUMM_2022_1_a4
C. H. Sarkysyan. Variation principles of moment-membrane theory of shells. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 38-47. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a4/

[1] Ilyushin A. A., “Nesimmetriya tenzorov deformatsii i napryazhenii v mekhanike sploshnykh sred”, Vestn. Mosk. un-ta. Matem. Mekhan., 1996, no. 5, 6–14 | MR

[2] Ilyushin A. A., Lomakin V. A., “Momentnye teorii v mekhanike tverdykh deformiruemykh tel”, Prochnost i plastichnost, Nauka, M., 1971

[3] Brovko G. L., “Ob odnoi konstruktsionnoi modeli sredy Kossera”, Izv. RAN. Mekhan. tverdogo tela, 2002, no. 1, 75–91

[4] Brovko G. L., Ivanova O. A., “Modelirovanie svoistv i dvizhenii neodnorodnogo odnomernogo kontinuuma slozhnoi struktury tipa Kossera”, Izv. RAN. Mekhan. tverdogo tela, 2008, no. 1, 22–36

[5] Pobedrya B. E., Omarov S. E., “Opredelyayuschie sootnosheniya momentnoi teorii uprugosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2007, no. 3, 56–58 | Zbl

[6] Kantor M. M., Nikabadze M. U., Ulukhanyan A. R., “Uravneniya dvizheniya i granichnye usloviya fizicheskogo soderzhaniya mikropolyarnoi teorii tonkikh tel s dvumya malymi razmerami”, Izv. RAN. Mekhan. tverdogo tela, 2013, no. 3, 96–110

[7] A.I. Potapov (red.), Vvedenie v mikro- i nanomekhaniku. Matematicheskie modeli i metody, Izd-vo NNGTU, Nizhnii Novgorod, 2010

[8] Ivanova E. A., Krivtsov A. M., Morozov N. F., Firsova A. D., “Uchet momentnogo vzaimodeistviya pri raschete izgibnoi zhestkosti nanostruktur”, Dokl. RAN, 391:6 (2003), 764–768

[9] Berinskii I. E., Krivtsov A. M., Kudarova A. M. i dr., Sovremennye problemy mekhaniki. Mekhanicheskie svoistva kovalentnykh kristallov, Izd-vo Politekhn. un-ta, SPb., 2014

[10] Panin V. E., “Osnovy fizicheskoi mezomekhaniki”, Fiz. mezomekhan., 1:1 (1998), 5–22

[11] Sarkisyan S. O., “Model tonkikh obolochek v momentnoi teorii uprugosti s deformatsionnoi kontseptsiei “sdvig plyus povorot””, Fiz. mezomekhan., 23:4 (2020), 13–19 | MR

[12] Nowacki W., Theory of Asymmetric Elasticity, Pergamon, Oxford, 1986 | MR | Zbl

[13] Goldenveizor A. L., Teoriya uprugikh tonkikh obolochek, GITTL, M., 1953 | MR

[14] Kupradze V. D., Gegelia T. G., Basheleishvili M. O., Burchuladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR

[15] Sarkisyan S. O., “Kraevye zadachi tonkikh plastin v nesimmetrichnoi teorii uprugosti”, Prikl. matem. i mekhan., 72:1 (2008), 129–147 | MR | Zbl

[16] Sarkisyan S. O., “Teoriya mikropolyarnykh uprugikh tonkikh obolochek”, Prikl. matem. i mekhan., 76:2 (2012), 325–343 | MR

[17] Leibenzon L. S., Kurs teorii uprugosti, GITTL, M.–L., 1947 | MR