Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 25-37

Voir la notice de l'article provenant de la source Math-Net.Ru

For mappings from measure space $(X,\mu)$ to Banach space $(Y,|\cdot|_Y)$ we defined an analogous of Sobolev classes $W_p^r(X;Y)$, $r=1,2,\dots$, and also Sobolev–Slobodetsky classes $W_p^r$, $r\in [1,\infty)$, and some of their generalizations. We prove the embedding theorems into $L_q$ and into Orlizc classes and study some properties of Sobolev functions.
@article{VMUMM_2022_1_a3,
     author = {N. N. Romanovskii},
     title = {Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--37},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/}
}
TY  - JOUR
AU  - N. N. Romanovskii
TI  - Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 25
EP  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/
LA  - ru
ID  - VMUMM_2022_1_a3
ER  - 
%0 Journal Article
%A N. N. Romanovskii
%T Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 25-37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/
%G ru
%F VMUMM_2022_1_a3
N. N. Romanovskii. Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 25-37. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/