Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 25-37
Voir la notice de l'article provenant de la source Math-Net.Ru
For mappings from measure space $(X,\mu)$ to Banach space $(Y,|\cdot|_Y)$ we defined an analogous of Sobolev classes $W_p^r(X;Y)$, $r=1,2,\dots$, and also Sobolev–Slobodetsky classes $W_p^r$, $r\in [1,\infty)$, and some of their generalizations. We prove the embedding theorems into $L_q$ and into Orlizc classes and study some properties of Sobolev functions.
@article{VMUMM_2022_1_a3,
author = {N. N. Romanovskii},
title = {Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {25--37},
publisher = {mathdoc},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/}
}
TY - JOUR AU - N. N. Romanovskii TI - Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 25 EP - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/ LA - ru ID - VMUMM_2022_1_a3 ER -
%0 Journal Article %A N. N. Romanovskii %T Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2022 %P 25-37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/ %G ru %F VMUMM_2022_1_a3
N. N. Romanovskii. Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 25-37. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/