Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 25-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For mappings from measure space $(X,\mu)$ to Banach space $(Y,|\cdot|_Y)$ we defined an analogous of Sobolev classes $W_p^r(X;Y)$, $r=1,2,\dots$, and also Sobolev–Slobodetsky classes $W_p^r$, $r\in [1,\infty)$, and some of their generalizations. We prove the embedding theorems into $L_q$ and into Orlizc classes and study some properties of Sobolev functions.
@article{VMUMM_2022_1_a3,
     author = {N. N. Romanovskii},
     title = {Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--37},
     year = {2022},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/}
}
TY  - JOUR
AU  - N. N. Romanovskii
TI  - Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 25
EP  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/
LA  - ru
ID  - VMUMM_2022_1_a3
ER  - 
%0 Journal Article
%A N. N. Romanovskii
%T Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 25-37
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/
%G ru
%F VMUMM_2022_1_a3
N. N. Romanovskii. Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 25-37. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a3/

[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[2] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[3] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[5] Triebel H., “Limits of Besov norms”, Arch. Math., 96 (2011), 169–175 | DOI | MR | Zbl

[6] Bojarski B., Hajlasz P., “Pointwise inequalities for Sobolev functions and some applications”, Stud. Math., 106 (1993), 77–92 | MR | Zbl

[7] Hajlasz P., “Sobolev spaces on an arbitrary metric spaces”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl

[8] Franchi V., Hajlasz P., Koskela P., “Definitions of Sobolev classes on metric spaces”, Ann. Inst. Fourier, 49:6 (1999), 1903–1924 | DOI | MR | Zbl

[9] Hajlasz P., Koskela P., “Sobolev met Poincaré”, Mem. AMS, 145, no. 688, 2000, 1–101 | MR

[10] Heinonen J., Lectures on analysis on metric spaces, Springer-Verlag, Berlin, 2001 | MR | Zbl

[11] Gol'dshtein V. M., Troyanov M., “Axiomatic theory of Sobolev spaces”, Expositiones Mathematicae, 19:4 (2001), 289–336 | DOI | MR | Zbl

[12] Bojarski B., “Pointwise characterization of Sobolev classes”, Tr. Matem. in-ta RAN, 255, 2006, 71–87 | MR | Zbl

[13] Johnsson A., “Brownian motion on fractals and function spaces”, Math. Z., 222:3 (1996), 495–504 | DOI | MR

[14] Barlow M. T., “Diffusions on fractals. Lectures on probability theory and statistics”, Lect. Notes in Math., 1690, Springer, Berlin, 1998 | DOI | MR

[15] Lott J., Villani C., “Ricci curvature for metric-measure spaces via optimal transport”, Ann. Math., 169:3 (2009), 903–991 | DOI | MR | Zbl

[16] Ambrosio L., Gigli N., Savare G., Gradient flows in metric spaces and in the space of probability measures, Lect. Math., 2nd ed., Birkhäuser, Basel, 2008 | MR | Zbl

[17] Kuwada K., “Duality on gradient estimates and Wasserstein controls”, J. Funct. Anal., 258 (2010), 3758–3774 | DOI | MR | Zbl

[18] Vodopyanov S. K., Romanovskii N. N., “Klassy otobrazhenii Soboleva na prostranstvakh Karno–Karateodori. Razlichnye normirovki i variatsionnye zadachi”, Sib. matem. zhurn., 49:5 (2008), 1028–1045 | MR | Zbl

[19] Reshetnyak Yu. G., “Sobolevskie klassy funktsii so znacheniyami v metricheskom prostranstve. I”, Sib. matem. zhurn., 38:3 (1997), 657–675 | MR | Zbl

[20] Reshetnyak Yu. G., “Sobolevskie klassy funktsii so znacheniyami v metricheskom prostranstve. II”, Sib. matem. zhurn., 45:4 (2004), 843–857 | MR

[21] Reshetnyak Yu. G., “K teorii sobolevskikh klassov funktsii”, Sib. matem. zhurn., 47:1 (2006), 146–168 | MR | Zbl

[22] Bonfiglioli A., Lanconelli E., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin, 2007 | MR | Zbl

[23] Jerison D., “The Poincare inequality for vector fields satisfying Hörmander's condition”, Duke Math. J., 53:2 (1986), 503–523 | DOI | MR | Zbl

[24] Villani C., “Optimal transport. Old and new”, Grundlehren der Math. Wiss., 338 (2009), 1–997 | MR

[25] Sturm K.-T., von Renesse M.-K., “Transport inequalities, gradient estimates, entropy, and Ricci curvature”, Communs Pure and Appl. Math., 58 (2005), 923–940 | DOI | MR | Zbl

[26] Ambrosio L., Gigli N., Savare G., Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below, arXiv: 1106.2090 | MR

[27] Romanovskii N. N., “Klassy Soboleva na proizvolnom metricheskom prostranstve s meroi. Kompaktnost operatorov vlozheniya”, Sib. matem. zhurn., 54:2 (2013), 450–467 | MR | Zbl

[28] Romanovskii N. N., “Teoremy vlozheniya i variatsionnaya zadacha dlya funktsii, zadannykh na proizvolnom metricheskom prostranstve s meroi”, Sib. matem. zhurn., 55:3 (2014), 627–649 | MR | Zbl

[29] Romanovskii N. N., “Teoremy vlozheniya i nekotorye ikh obobscheniya dlya funktsii, zadannykh na metricheskom prostranstve s meroi”, Sib. matem. zhurn., 59:1 (2018), 158–170 | MR | Zbl

[30] Dezin A. A., “K teoremam vlozheniya i zadache o prodolzhenii funktsii”, Dokl. AN SSSR, 88:5 (1953), 741–743 | Zbl

[31] Brudnyi Yu. A., “Kriterii suschestvovaniya proizvodnykh v $L_p$”, Matem. sb., 73:1 (1967), 42–65

[32] Ivanishko I. A., Krotov V. G., “Kompaktnost vlozhenii sobolevskogo tipa”, Matem. zametki, 86:6 (2009), 829–844 | MR | Zbl

[33] Krotov V. G., “Kriterii kompaktnosti v prostranstvakh $L_p$, $p>0$”, Matem. sb., 203:7 (2012), 129–148 | MR | Zbl

[34] Pokhozhaev S. I., “O teoreme vlozheniya S. L. Soboleva v sluchae $pl=n$”, Dokl. nauch.-tekhn. konf. Cektsiya matem., MEI, M., 1965, 158–170

[35] Trudinger N. S., “On imbeddings into Orlicz spaces and some applications”, J. Math. and Mech., 17:5 (1967), 473–483 | MR | Zbl

[36] Cianchi A. A., “Sharp embedding theorem for Orlicz–Sobolev spaces”, Indiana Univ. Math. J., 45 (1996), 39–65 | DOI | MR | Zbl

[37] Trushin B. V., “Vlozhenie prostranstva Soboleva v prostranstva Orlicha dlya oblasti s neregulyarnoi granitsei”, Matem. zametki, 79:5 (2006), 767–778 | MR | Zbl