@article{VMUMM_2022_1_a2,
author = {A. A. Farvazova},
title = {Robust utility maximization in terms of supermartingale measures},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {19--25},
year = {2022},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a2/}
}
A. A. Farvazova. Robust utility maximization in terms of supermartingale measures. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 19-25. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a2/
[1] Felmer G., Shid A., Vvedenie v stokhasticheskie finansy. Diskretnoe vremya, MTsNMO, M., 2008
[2] Guschin A. A., “O rasshirenii ponyatiya f-divergentsii”, Teor. veroyatn. i ee primen., 52:3 (2007), 468–489 | MR
[3] Guschin A. A., “Dvoistvennaya kharakterizatsiya tseny v zadache maksimizatsii robastnoi poleznosti”, Teor. veroyatn. i ee primen., 55:4 (2010), 680–704
[4] Kramkov D., Schachermayer W., “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR | Zbl
[5] Brannath W., Schachermayer W., “A bipolar theorem for $L^{0}_{+}(\Omega,\mathcal{F},\mathbb{P})$”, Seminaire de Probabilites XXXIII, Lect. Notes Math., 1709, Springer, Berlin, 1999, 349–354 | DOI | MR | Zbl
[6] Follmer H., Kramkov D., “Optional decompositions under constraints”, Probab. Theory and Related Fields, 109:1 (1997), 1–25 | DOI | MR | Zbl
[7] Rokhlin D. B., “O suschestvovanii ekvivalentnoi supermartingalnoi plotnosti dlya razvetvlenno-vypuklogo semeistva sluchainykh protsessov”, Matem. zametki, 87:4 (2010), 594–603 | Zbl
[8] Zitkovic G. A., “A filtered version of the bipolar theorem of Brannath and Schachermayer”, J. Theor. Probab., 15:1 (2002), 41–61 | DOI | MR | Zbl
[9] Yan J. A., “Caracterisation d'une classe d'ensembles convexes de $L^{1}$ ou $H^{1}$”, Seminaire de Probabilites XIV, Lect. Notes Math., 784, Springer, Berlin, 1980, 220–222 | DOI | MR