Robust utility maximization in terms of supermartingale measures
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 19-25

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a dual description of the optimal value of robust utility in the abstract model of the financial market $(\Omega,\mathscr{F},\mathrm{P},\mathscr{A}(x))$, where $\mathscr{A}(x)=x\mathscr{A}$, $x\geq 0$, is the set of the investor's terminal capitals corresponding to strategies with the initial capital $x$. The main result of the paper addresses the question of the transition in the definition of the dual problem from the polar of the set $\mathscr{A}$ to a narrower set of limit values of supermartingale densities.
@article{VMUMM_2022_1_a2,
     author = {A. A. Farvazova},
     title = {Robust utility maximization in terms of supermartingale measures},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {19--25},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a2/}
}
TY  - JOUR
AU  - A. A. Farvazova
TI  - Robust utility maximization in terms of supermartingale measures
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 19
EP  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a2/
LA  - ru
ID  - VMUMM_2022_1_a2
ER  - 
%0 Journal Article
%A A. A. Farvazova
%T Robust utility maximization in terms of supermartingale measures
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 19-25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a2/
%G ru
%F VMUMM_2022_1_a2
A. A. Farvazova. Robust utility maximization in terms of supermartingale measures. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 19-25. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a2/