Robust utility maximization in terms of supermartingale measures
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 19-25
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a dual description of the optimal value of robust utility in the abstract model of the financial market $(\Omega,\mathscr{F},\mathrm{P},\mathscr{A}(x))$, where $\mathscr{A}(x)=x\mathscr{A}$, $x\geq 0$, is the set of the investor's terminal capitals corresponding to strategies with the initial capital $x$. The main result of the paper addresses the question of the transition in the definition of the dual problem from the polar of the set $\mathscr{A}$ to a narrower set of limit values of supermartingale densities.
@article{VMUMM_2022_1_a2,
author = {A. A. Farvazova},
title = {Robust utility maximization in terms of supermartingale measures},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {19--25},
publisher = {mathdoc},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a2/}
}
A. A. Farvazova. Robust utility maximization in terms of supermartingale measures. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 19-25. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a2/