Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 8-19
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The integrability of billiards bounded by arcs of confocal quadrics in the Minkowski plane in a field with the Hooke potential is obtained. The case of this type of a billiard in an ellipse is studied in detail. The topology of Liouville foliations arising in this problem is also studied and Fomenko invariants are also constructed.
@article{VMUMM_2022_1_a1,
     author = {V. V. Vedyushkina and A. I. Skvortsov},
     title = {Topology of integrable billiard in an ellipse on the {Minkowski} plane with the {Hooke} potential},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--19},
     year = {2022},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a1/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
AU  - A. I. Skvortsov
TI  - Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 8
EP  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a1/
LA  - ru
ID  - VMUMM_2022_1_a1
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%A A. I. Skvortsov
%T Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 8-19
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a1/
%G ru
%F VMUMM_2022_1_a1
V. V. Vedyushkina; A. I. Skvortsov. Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 8-19. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a1/

[1] Fokicheva V. V., Fomenko A. T., “Integriruemye billiardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, Dokl. RAN. Matem., 465:2 (2015), 150–153 | MR | Zbl

[2] Vedyushkina (Fokicheva) V. V., Fomenko A. T., “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | MR | Zbl

[3] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno-ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | MR | Zbl

[4] Dragovich V., Radnovich M., Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010

[5] Dragović V., Radnović M., “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4–5 (2009), 479–494 | DOI | MR | Zbl

[6] Dragovich V., Radnovich M., “Topologicheskie invarianty ellipticheskikh billiardov i geodezicheskikh potokov na ellipsoide”, Fund. i prikl. matem., 20:3 (2015), 51–64

[7] Karginova E. E., “Billiardy, ogranichennye dugami sofokusnykh kvadrik na ploskosti Minkovskogo”, Matem. sb., 211:1 (2020), 3–31 | MR | Zbl

[8] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[9] Fomenko A. T., “Teoriya bordizmov integriruemykh gamiltonovykh nevyrozhdennykh sistem s dvumya stepenyami svobody. Novyi topologicheskii invariant mnogomernykh integriruemykh sistem”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 55:4 (1991), 747–779

[10] Fomenko A. T., “Topologicheskii invariant, grubo klassifitsiruyuschii integriruemye strogo nevyrozhdennye gamiltoniany na chetyrekhmernykh simplekticheskikh mnogoobraziyakh”, Funkts. analiz i ego pril., 25:4 (1991), 23–35 | MR

[11] Fedoseev D. A., Fomenko A. T., “Noncompact bifurcations of integrable dynamic systems”, J. Math. Sci., 248 (2020), 810–827 | DOI | MR | Zbl

[12] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999

[13] Kozlov V. V., Treschev D. V., Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991

[14] Kharlamov M. P., “Topologicheskii analiz i bulevy funktsii. I. Metody i priblizheniya k klassicheskim sistemam”, Nelineinaya dinamika, 6:4 (2010), 769–805

[15] Nikolaenko S. S., “Topological classification of the Goryachev integrable systems in the rigid body dynamics: Non-compact case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060 | DOI | MR | Zbl

[16] Fedoseev D. A., Fomenko A. T., “Nekompaktnye osobennosti integriruemykh dinamicheskikh sistem”, Fund. i prikl. matem., 21:6 (2016), 217–243