@article{VMUMM_2022_1_a0,
author = {A. V. Lebedev},
title = {The possibility of existence of extremal indices exceeding one},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--8},
year = {2022},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a0/}
}
A. V. Lebedev. The possibility of existence of extremal indices exceeding one. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a0/
[1] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989 | MR
[2] Embrechts P., Klüppelberg C., Mikosh T., Modelling extremal events for insurance and finance, Springer, Berln, 2003 | MR
[3] de Haan L., Ferreira A., Extreme value theory. An introduction, Springer, N.Y., 2006 | MR | Zbl
[4] Novak S.Yu., Extreme value methods with applications to finance, Monographs on Statistics and Applied Probability, 122, CRC Press, Boca Raton, FL, 2012 | MR | Zbl
[5] Lebedev A. V., “Ekstremalnye indeksy v skheme serii i ikh prilozheniya”, Inform. i ee primen., 9:3 (2015), 39–54
[6] Lebedev A. V., Neklassicheskie zadachi stokhasticheskoi teorii ekstremumov, Dokt. dis., MGU, M., 2016
[7] Goldaeva A. A., Lebedev A. V., “On extremal indices greater than one for a scheme of series”, Lithuan. Math. J., 58:4 (2018), 384–398 | DOI | MR | Zbl
[8] Markovich N. M., Rodionov I. V., “Maxima and sums of non-stationary random length sequences”, Extremes, 23:3 (2020), 451–464 | DOI | MR | Zbl
[9] Markovich N. M., Extremes of sums and maxima with application to random networks, arXiv: 2110.04120
[10] Nelsen R., An introduction to copulas, Springer, N.Y., 2006 | MR | Zbl
[11] McNeil A. J., Frey R., Embrechts P., Quantitative risk management, Princeton University Press, Princeton, 2005 | MR | Zbl
[12] Blagoveschenskii Yu. N., “Osnovnye elementy teorii kopul”, Prikl. ekonometrika, 26:2 (2012), 113–130 | MR