Keldysh type problem with an integral condition for two-dimensional $B$-hyperbolic equation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 31-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a rectangular domain, a nonlocal problem with insufficient boundary conditions and an integral condition of the first kind is studied for a two-dimensional hyperbolic equation with the Bessel operator. The uniqueness and existence theorems are proved for this problem by the method of spectral analysis. The solution to the problem is constructed in the form of a Fourier–Bessel series, the problem of small denominators is resolved. Estimates for the initial functions are obtained and the convergence of the series in the class of regular solutions is proved.
@article{VMUMM_2021_5_a3,
     author = {N. V. Zaitseva},
     title = {Keldysh type problem with an integral condition for two-dimensional $B$-hyperbolic equation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {31--39},
     year = {2021},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a3/}
}
TY  - JOUR
AU  - N. V. Zaitseva
TI  - Keldysh type problem with an integral condition for two-dimensional $B$-hyperbolic equation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 31
EP  - 39
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a3/
LA  - ru
ID  - VMUMM_2021_5_a3
ER  - 
%0 Journal Article
%A N. V. Zaitseva
%T Keldysh type problem with an integral condition for two-dimensional $B$-hyperbolic equation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 31-39
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a3/
%G ru
%F VMUMM_2021_5_a3
N. V. Zaitseva. Keldysh type problem with an integral condition for two-dimensional $B$-hyperbolic equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 31-39. http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a3/

[1] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR, 77:2 (1951), 181–183

[2] Weinstein A., “Discontinuous integrals and generalized theory of potential”, Trans. Amer. Math. Soc., 63 (1948), 342–354 | DOI | Zbl

[3] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka. Fizmatlit, M., 1997

[4] Lomov I. S., “Teorema o bezuslovnoi bazisnosti kornevykh vektorov nagruzhennykh differentsialnykh operatorov vtorogo poryadka”, Differents. uravneniya, 27:9 (1991), 1550–1563

[5] Muravnik A. B., “Funktsionalno-differentsialnye parabolicheskie uravneniya: integralnye predstavleniya i kachestvennye svoistva reshenii zadachi Koshi”, Sovremennaya matematika. Fundamentalnye napravleniya, 52, 2014, 3–143

[6] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019

[7] Frank F., Mizes R., Differentsialnye i integralnye uravneniya matematicheskoi fiziki, v. 2, Gl. red. obschetekhn. lit-ry, L., 1937

[8] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 276–304

[9] Shkalikov A. A., “O bazisnosti sobstvennykh funktsii obyknovennogo differentsialnogo operatora s integralnymi kraevymi usloviyami”, Vestn. Mosk. un-ta. Matem. Mekhan., 1982, no. 6, 12–21 | Zbl

[10] Skubachevskii A. L., “Neklassicheskie kraevye zadachi. I”, Sovremennaya matematika. Fundamentalnye napravleniya, 26, 2007, 3–132

[11] Skubachevskii A. L., “Neklassicheskie kraevye zadachi. II”, Sovremennaya matematika. Fundamentalnye napravleniya, 33, 2009, 3–179

[12] Lomov I. S., “Ravnomernaya skhodimost razlozhenii po kornevym funktsiyam differentsialnogo operatora s integralnymi kraevymi usloviyami”, Differents. uravneniya, 55:4 (2019), 486–497 | Zbl

[13] Vatson G. N., Teoriya besselevykh funktsii, v. 1, IL, M., 1949

[14] Vladimirov V. S., Uravneniya matematicheskoi fiziki, 4-e izd., Nauka. Gl. red. fiz.-mat. lit-ry, M., 1981

[15] Sabitov K. B., Zaitseva N. V., “Initial-boundary value problem for hyperbolic equation with singular coefficient and integral condition of second kind”, Lobachevskii J. Math., 39:9 (2018), 1419–1427 | DOI | Zbl

[16] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Mir, M., 1986

[17] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii s chastnymi proizvodnymi vysokikh poryadkov”, Matem. zametki, 97:2 (2015), 262–276 | Zbl

[18] Sabitov K. B., Zaitseva N. V., “Nachalnaya zadacha dlya $B$-giperbolicheskogo uravneniya s integralnym usloviem vtorogo roda”, Differents. uravneniya, 54:1 (2018), 123–135 | Zbl