Topological analysis of an elliptic billiard in a fourth-order potential field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 8-19
Voir la notice de l'article provenant de la source Math-Net.Ru
A planar billiard is considered in an elliptic domain in the case a polynomial potential of fourth degree acts to a material point. This dynamical system always has the first integral called the total energy which is also a Hamiltonian of this system. Assuming some additional conditions on the potential to guaranty the existence of another first integral which is independent on the Hamiltonian, the system turns out to be a Liouville integrable. The paper presents topological analysis of the corresponding Liouville foliation of this system. Namely, bifurcation diagrams are constructed and Fomenko–Zieschang invariants are calculated.
@article{VMUMM_2021_5_a1,
author = {S. E. Pustovoitov},
title = {Topological analysis of an elliptic billiard in a fourth-order potential field},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {8--19},
publisher = {mathdoc},
number = {5},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a1/}
}
TY - JOUR AU - S. E. Pustovoitov TI - Topological analysis of an elliptic billiard in a fourth-order potential field JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2021 SP - 8 EP - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a1/ LA - ru ID - VMUMM_2021_5_a1 ER -
S. E. Pustovoitov. Topological analysis of an elliptic billiard in a fourth-order potential field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 8-19. http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a1/