@article{VMUMM_2021_5_a1,
author = {S. E. Pustovoitov},
title = {Topological analysis of an elliptic billiard in a fourth-order potential field},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {8--19},
year = {2021},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a1/}
}
S. E. Pustovoitov. Topological analysis of an elliptic billiard in a fourth-order potential field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 8-19. http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a1/
[1] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. I, II, RKhD, Izhevsk, 1999
[2] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1 (265) (1989), 145–173
[3] Vedyushkina V. V. (Fokicheva), Fomenko A. T., “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | Zbl
[4] Vedyushkina V. V., Fomenko A. T., “Ponizhenie stepeni integralov gamiltonovykh sistem s pomoschyu billiardov”, Dokl. RAN, 486:2 (2019), 151–155 | Zbl
[5] Vedyushkina V. V., Fomenko A. T., “Integriruemye geodezicheskie potoki na orientiruemykh dvumernykh poverkhnostyakh i topologicheskie billiardy”, Izv. RAN. Ser. matem., 83:6 (2019), 63–103 | Zbl
[6] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | Zbl
[7] Kozlov V. V., “Nekotorye integriruemye obobscheniya zadachi Yakobi o geodezicheskikh na ellipsoide”, Prikl. matem. i mekhan., 59:1 (1995), 3–9 | Zbl
[8] Dragovich V. I., “Integrable perturbations of a Birkhoff billiards inside an ellipse”, J. Appl. Math. and Mech., 62:1 (1998), 159–162 | DOI | Zbl
[9] Kobtsev I. F., “Ellipticheskii billiard v pole potentsialnykh sil: klassifikatsiya dvizhenii, topologicheskii analiz”, Matem. sb., 211:7 (2020), 3–30