Topological analysis of an elliptic billiard in a fourth-order potential field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 8-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A planar billiard is considered in an elliptic domain in the case a polynomial potential of fourth degree acts to a material point. This dynamical system always has the first integral called the total energy which is also a Hamiltonian of this system. Assuming some additional conditions on the potential to guaranty the existence of another first integral which is independent on the Hamiltonian, the system turns out to be a Liouville integrable. The paper presents topological analysis of the corresponding Liouville foliation of this system. Namely, bifurcation diagrams are constructed and Fomenko–Zieschang invariants are calculated.
@article{VMUMM_2021_5_a1,
     author = {S. E. Pustovoitov},
     title = {Topological analysis of an elliptic billiard in a fourth-order potential field},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--19},
     year = {2021},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a1/}
}
TY  - JOUR
AU  - S. E. Pustovoitov
TI  - Topological analysis of an elliptic billiard in a fourth-order potential field
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 8
EP  - 19
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a1/
LA  - ru
ID  - VMUMM_2021_5_a1
ER  - 
%0 Journal Article
%A S. E. Pustovoitov
%T Topological analysis of an elliptic billiard in a fourth-order potential field
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 8-19
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a1/
%G ru
%F VMUMM_2021_5_a1
S. E. Pustovoitov. Topological analysis of an elliptic billiard in a fourth-order potential field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 8-19. http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a1/

[1] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. I, II, RKhD, Izhevsk, 1999

[2] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1 (265) (1989), 145–173

[3] Vedyushkina V. V. (Fokicheva), Fomenko A. T., “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | Zbl

[4] Vedyushkina V. V., Fomenko A. T., “Ponizhenie stepeni integralov gamiltonovykh sistem s pomoschyu billiardov”, Dokl. RAN, 486:2 (2019), 151–155 | Zbl

[5] Vedyushkina V. V., Fomenko A. T., “Integriruemye geodezicheskie potoki na orientiruemykh dvumernykh poverkhnostyakh i topologicheskie billiardy”, Izv. RAN. Ser. matem., 83:6 (2019), 63–103 | Zbl

[6] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | Zbl

[7] Kozlov V. V., “Nekotorye integriruemye obobscheniya zadachi Yakobi o geodezicheskikh na ellipsoide”, Prikl. matem. i mekhan., 59:1 (1995), 3–9 | Zbl

[8] Dragovich V. I., “Integrable perturbations of a Birkhoff billiards inside an ellipse”, J. Appl. Math. and Mech., 62:1 (1998), 159–162 | DOI | Zbl

[9] Kobtsev I. F., “Ellipticheskii billiard v pole potentsialnykh sil: klassifikatsiya dvizhenii, topologicheskii analiz”, Matem. sb., 211:7 (2020), 3–30