Noncompactness of segments in the Gromov–Hausdorff space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 3-8
Cet article a éte moissonné depuis la source Math-Net.Ru
We study properties of segments in the Gromov–Hausdorff metric space. A segment is a subset of a metric space consisting of points lying between two given points. We prove that any segment in the Gromov–Hausdorff space with endpoints being non-isometric compact metric spaces contains an element that is a compact metric space with at least one isolated point. Using this theorem and Gromov's precompactness criterion, we prove that any nondegenerate segment in the Gromov–Hausdorff space is not a compact set.
@article{VMUMM_2021_5_a0,
author = {O. B. Borisova},
title = {Noncompactness of segments in the {Gromov{\textendash}Hausdorff} space},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--8},
year = {2021},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a0/}
}
O. B. Borisova. Noncompactness of segments in the Gromov–Hausdorff space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a0/
[1] Hausdorff F., Grundzüge der Mengenlehre, von Veit, Leipzig, 1914; Khausdorf F., Teoriya mnozhestv, M.–L., 1937
[2] Gromov M., “Groups of polynomial growth and expanding maps”, Publications mathematiques, 53 (1981), 53–78 | DOI | Zbl
[3] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004
[4] Edwards D. A., The structure of superspace. Studies in topology, Academic Press, San Francisco et al., 1975
[5] Ivanov A., Nikolaeva N., Tuzhilin A., The Gromov–Hausdorff metric on the space of compact metric spaces is strictly intrinsic, 2015, arXiv: 1504.03830
[6] Ivanov A. O., Iliadis S., Tuzhilin A. A., Realizations of Gromov–Hausdorff distance, 2016, arXiv: 1603.08850