Noncompactness of segments in the Gromov--Hausdorff space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of segments in the Gromov–Hausdorff metric space. A segment is a subset of a metric space consisting of points lying between two given points. We prove that any segment in the Gromov–Hausdorff space with endpoints being non-isometric compact metric spaces contains an element that is a compact metric space with at least one isolated point. Using this theorem and Gromov's precompactness criterion, we prove that any nondegenerate segment in the Gromov–Hausdorff space is not a compact set.
@article{VMUMM_2021_5_a0,
     author = {O. B. Borisova},
     title = {Noncompactness of segments in the {Gromov--Hausdorff} space},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a0/}
}
TY  - JOUR
AU  - O. B. Borisova
TI  - Noncompactness of segments in the Gromov--Hausdorff space
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 3
EP  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a0/
LA  - ru
ID  - VMUMM_2021_5_a0
ER  - 
%0 Journal Article
%A O. B. Borisova
%T Noncompactness of segments in the Gromov--Hausdorff space
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 3-8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a0/
%G ru
%F VMUMM_2021_5_a0
O. B. Borisova. Noncompactness of segments in the Gromov--Hausdorff space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a0/