Noncompactness of segments in the Gromov--Hausdorff space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
We study properties of segments in the Gromov–Hausdorff metric space. A segment is a subset of a metric space consisting of points lying between two given points. We prove that any segment in the Gromov–Hausdorff space with endpoints being non-isometric compact metric spaces contains an element that is a compact metric space with at least one isolated point. Using this theorem and Gromov's precompactness criterion, we prove that any nondegenerate segment in the Gromov–Hausdorff space is not a compact set.
@article{VMUMM_2021_5_a0,
author = {O. B. Borisova},
title = {Noncompactness of segments in the {Gromov--Hausdorff} space},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--8},
publisher = {mathdoc},
number = {5},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a0/}
}
O. B. Borisova. Noncompactness of segments in the Gromov--Hausdorff space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2021), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2021_5_a0/