Orbital invariants of flat billiards bounded by arcs of confocal quadrics and containing focuses
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 48-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Rotation functions for flat billiards bounded by arcs of confocal quadrics and containing focuses are calculated. The orbital Bolsinov–Fomenko invariants of these dynamical systems are also calculated.
@article{VMUMM_2021_4_a8,
     author = {V. V. Vedyushkina},
     title = {Orbital invariants of flat billiards bounded by arcs of confocal quadrics and containing focuses},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--51},
     year = {2021},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a8/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
TI  - Orbital invariants of flat billiards bounded by arcs of confocal quadrics and containing focuses
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 48
EP  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a8/
LA  - ru
ID  - VMUMM_2021_4_a8
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%T Orbital invariants of flat billiards bounded by arcs of confocal quadrics and containing focuses
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 48-51
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a8/
%G ru
%F VMUMM_2021_4_a8
V. V. Vedyushkina. Orbital invariants of flat billiards bounded by arcs of confocal quadrics and containing focuses. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a8/

[1] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya geodezicheskikh potokov na dvumernykh ellipsoidakh. Zadacha Yakobi traektorno ekvivalentna integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Funkts. analiz i ego pril., 29:3 (1995), 1–15 | MR | Zbl

[2] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999

[3] Birkgof Dzh.D., Dinamicheskie sistemy, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999

[4] Kozlov V. V., Treschev D. V., Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991

[5] Fokicheva V. V., “Opisanie osobennostei sistemy “bilyard v ellipse””, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 5, 31–34 | MR | Zbl

[6] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno-ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | MR | Zbl

[7] Dragovich V., Radnovich M., Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2010