Action of free commuting involutions on closed two-dimensional manifolds
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 44-47
Cet article a éte moissonné depuis la source Math-Net.Ru
Consider a function $f(g)$ associating each oriented surface $M$ of genus $g$ with the maximal number of free commuting involutions on $M$. It is proved that the surface of minimal genus $g$ for which $f(g) = n$ is the moment-angle complex $\mathcal{R}_\mathcal{K}$, where $\mathcal K$ is the boundary of an $(n+2)$-gon. Its genus is given by the formula $g=1+2^{n-1}(n-2)$.
@article{VMUMM_2021_4_a7,
author = {T. Yu. Neretina},
title = {Action of free commuting involutions on closed two-dimensional manifolds},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {44--47},
year = {2021},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a7/}
}
T. Yu. Neretina. Action of free commuting involutions on closed two-dimensional manifolds. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 44-47. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a7/
[1] Buchstaber V., Panov T., Toric Topology, Math. Surveys and Monographs, 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[2] Panov T. E., “Geometricheskie struktury na moment-ugol-mnogoobraziyakh”, Uspekhi matem. nauk, 68:3 (2013), 111–186 | MR | Zbl
[3] Coxeter H. S.M., “Regular skew polyhedra in three and four dimensions and their topological analogues”, Proc. London. Math. Soc., 43:2 (1937), 33–62 | MR
[4] Khatcher A., Algebraicheskaya topologiya, MTsNMO, M., 2011