Action of free commuting involutions on closed two-dimensional manifolds
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 44-47

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a function $f(g)$ associating each oriented surface $M$ of genus $g$ with the maximal number of free commuting involutions on $M$. It is proved that the surface of minimal genus $g$ for which $f(g) = n$ is the moment-angle complex $\mathcal{R}_\mathcal{K}$, where $\mathcal K$ is the boundary of an $(n+2)$-gon. Its genus is given by the formula $g=1+2^{n-1}(n-2)$.
@article{VMUMM_2021_4_a7,
     author = {T. Yu. Neretina},
     title = {Action of free commuting involutions on closed two-dimensional manifolds},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {44--47},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a7/}
}
TY  - JOUR
AU  - T. Yu. Neretina
TI  - Action of free commuting involutions on closed two-dimensional manifolds
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 44
EP  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a7/
LA  - ru
ID  - VMUMM_2021_4_a7
ER  - 
%0 Journal Article
%A T. Yu. Neretina
%T Action of free commuting involutions on closed two-dimensional manifolds
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 44-47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a7/
%G ru
%F VMUMM_2021_4_a7
T. Yu. Neretina. Action of free commuting involutions on closed two-dimensional manifolds. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 44-47. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a7/