Controlled transfer in a model of biomass dynamics of root plants
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 35-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article shows the possibility of solving the problem of the transition between periodic and point attractors in the bistable Rosenzweig–MacArthur model with modifications for the dynamics of root hemiparasitic plants and their hosts.
@article{VMUMM_2021_4_a5,
     author = {V. V. Aleksandrov and T. B. Alexandrova and L. Cruzado Lima and J. A. Escamilla Reyna},
     title = {Controlled transfer in a model of biomass dynamics of root plants},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--40},
     year = {2021},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a5/}
}
TY  - JOUR
AU  - V. V. Aleksandrov
AU  - T. B. Alexandrova
AU  - L. Cruzado Lima
AU  - J. A. Escamilla Reyna
TI  - Controlled transfer in a model of biomass dynamics of root plants
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 35
EP  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a5/
LA  - ru
ID  - VMUMM_2021_4_a5
ER  - 
%0 Journal Article
%A V. V. Aleksandrov
%A T. B. Alexandrova
%A L. Cruzado Lima
%A J. A. Escamilla Reyna
%T Controlled transfer in a model of biomass dynamics of root plants
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 35-40
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a5/
%G ru
%F VMUMM_2021_4_a5
V. V. Aleksandrov; T. B. Alexandrova; L. Cruzado Lima; J. A. Escamilla Reyna. Controlled transfer in a model of biomass dynamics of root plants. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 35-40. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a5/

[1] Press M. C., “Autotrophy and heterotrophy in root hemiparasites”, Trends Ecol. Evol., 4 (1989), 258–263 | DOI

[2] Press M. C., Phoenix G. K., “Impacts of parasitic plants on natural communities”, New Phytol., 166 (2005), 737–751 | DOI

[3] Cameron D. D., Hwangbo J. K., Keith A. M., Geniez J. M., Kraushaar D., Rowntree J., Seel W. E., “Interactions between the hemiparasitic angiosperm Rhinanthus minor and its hosts: from the cell to the Ecosystem”, Folia Geobot., 40 (2005), 217–229 | DOI

[4] Parker C., “Observations on the current status of Orobanche and Striga problems worldwide”, Pest Manage Sci., 65 (2009), 453–459 | DOI

[5] Fibich P., Leps J., Berec L., “Modelling the population dynamics of root hemiparasitic plants along a productivity gradient”, Folia Geobot., 45 (2010), 425–442 | DOI

[6] Rosenzweig M. L., MacArthur R. H., “Graphical representation and stability conditions of predator–prey interactions”, Amer. Natur., 97 (1963), 209–223 | DOI

[7] Simiu E., Chaotic Transitions in Deterministic and Stochastic Dynamical Systems, Princeton University Press, Princeton, 2002 | MR | Zbl

[8] FAO (Food and Agriculture Organization of the United Nations). Progress on farmer training in parasitic weed management, Rome, Italy, 2008

[9] Konovalenko I. S., “O postroenii mnozhestva dostizhimosti v okrestnosti periodicheskogo attraktora”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 3, 67–71

[10] Reithmeier E., Periodic Solution of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos, Springer-Verlag, Germany, 1991 | MR

[11] Farkas M., Periodic motions, Springer-Verlag, USA, 1994 | MR | Zbl

[12] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Izd-vo MGU, M., 1998

[13] Aleksandrov V. V., Boltyanskii V. G., Lemak S. S., Parusnikov N. A., Tikhomirov V. M., Optimalnoe upravlenie dvizheniem, Fizmatlit, M., 2005

[14] Habimana S., Nduwumuremyi A., Chinama R., “Management of orobanche in field crops”, J. Soil Sci. and Plant Nutrition, 14:1 (2014), 43–62