Short-wave instability of one-dimensional radiative-convective models of the atmosphere using a quasi-hydrostatic approach
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 30-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One-dimensional radiation-convective models are widely used for studying long-term climate and the influence of various processes (condensation of water vapor, the motion of droplets, and their impacts on radiative fluxes, etc.) on the hydrodynamics of the atmosphere. However, long-term prediction of climate is difficult due to the properties of the systems of equations, i.e., a small short-wave perturbation of the basic solution leads to a sharp increase in the amplitude of the perturbation. In this work, a one-dimensional non-stationary model with quasi-hydrostatic approximation is established and the short-wave instability is analyzed for various approximate models with the quasi-hydrostatic approximation.
@article{VMUMM_2021_4_a4,
     author = {X. Xu},
     title = {Short-wave instability of one-dimensional radiative-convective models of the atmosphere using a quasi-hydrostatic approach},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {30--35},
     year = {2021},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a4/}
}
TY  - JOUR
AU  - X. Xu
TI  - Short-wave instability of one-dimensional radiative-convective models of the atmosphere using a quasi-hydrostatic approach
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 30
EP  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a4/
LA  - ru
ID  - VMUMM_2021_4_a4
ER  - 
%0 Journal Article
%A X. Xu
%T Short-wave instability of one-dimensional radiative-convective models of the atmosphere using a quasi-hydrostatic approach
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 30-35
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a4/
%G ru
%F VMUMM_2021_4_a4
X. Xu. Short-wave instability of one-dimensional radiative-convective models of the atmosphere using a quasi-hydrostatic approach. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 30-35. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a4/

[1] Manebe S., Wetherald R. T., “Thermal equilibrium of the atmosphere with a given distribution of relative humidity”, J. Atmos. Sci., 24:3 (1967), 241–259 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[2] Augustsson T., Ramanathan V., “A radiative-convective model study of the CO$_2$ climate problem”, J. Atmos. Sci., 33:3 (1977), 448–451 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] Ramanathan V., James A. C., “Climate modeling through radiative-convective models”, Rev. Geophys., 16:4 (1978), 465–489 | DOI

[4] Charlock T. P., “Cloud optical feedback and climate stability in a radiative-convective model”, Tellus, 34:3 (1982), 245–254 | DOI

[5] Liou K. N., Ou S.C., “The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective”, J. Geophys. Res.: Atmospheres, 94:D6 (1989), 8599–8607 | DOI

[6] Rennó N.O., Emanuel K. A., Stone P. H., “Radiative-convective model with an explicit hydrologic cycle: 1. Formulation and sensitivity to model parameters”, J. Geophys. Res.: Atmospheres, 99:D7 (1994), 14429–14441 | DOI

[7] Rennó N.O., Stone P. H., Emanuel K. A., “Radiative-convective model with an explicit hydrologic cycle: 2. Sensitivity to large changes in solar forcing”, J. Geophys. Res.: Atmospheres, 99:D8 (1994), 17001–17020 | DOI

[8] Kelly M. A., Randall D. A., Stephens G. L., “A simple radiative-convective model with a hydrological cycle and interactive clouds”, Quart. J. Roy. Meteorol. Soc., 125:555 (1999), 837–869 | DOI

[9] Larson V. E., “Stability properties of and scaling laws for a dry radiative-convective atmosphere”, Quart. J. Roy. Meteorol. Soc., 126:562 (2000), 145–171 | DOI

[10] Larson V. E., “The effects of thermal radiation on dry convective instability”, Dynamics Atmos. and Oceans, 34:1 (2001), 45–71 | DOI

[11] Emanuel K., Wing A. A., Vincent E. M., “Radiative-convective instability”, J. Adv. Model. Earth Systems., 6:1 (2014), 75–90 | DOI

[12] Fuchs Z., Raymond D. J., “Large-scale modes in a rotating atmosphere with radiative-convective instability and WISHE”, J. Atmos. Sci., 62:11 (2005), 4084–4094 | DOI

[13] Beucler T., Cronin T., Emanuel K., “A linear response framework for radiative-convective instability”, J. Adv. Model. Earth Systems., 10:8 (2018), 1924–1951 | DOI

[14] Nigmatulin R. I., “Uravneniya gidro-i termodinamiki atmosfery pri malykh silakh inertsii po sravneniyu s siloi tyazhesti”, Prikl. matem. i mekhan., 82:4 (2018), 472–484 | Zbl

[15] Monin A. S., Teoreticheskie osnovy geofizicheskoi gidrodinamiki, Gidrometeoizdat, M., 1988

[16] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Nauka, M., 1986 | MR

[17] Holton J. R., Hakim G. J., An Introduction to Dynamic Meteorology, 5th ed., Academic Press, Waltham, 2012 | MR

[18] Marchuk G. I., Chislennoe reshenie zadach dinamiki atmosfery i okeana, Gidrometeoizdat, M., 1974