Bulgakov problem for a hyperbolic equation and robust stability
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 23-30
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An inhomogeneous wave equation with dissipation in the presence of an external uncertain perturbation is considered. The problem of finding solutions with the maximum possible amplitudes is investigated. A method for solving this problem based on the Fourier method of separating variables and the Bulgakov problem of the maximum deviation of solutions of second-order ordinary differential equations with external uncertain perturbations is proposed. The application of the Fourier method is justified. The robust stability property of the considered wave equation is investigated.
			
            
            
            
          
        
      @article{VMUMM_2021_4_a3,
     author = {V. N. Zhermolenko and R. Temoltzi-Avila},
     title = {Bulgakov problem for a hyperbolic equation and robust stability},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {23--30},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a3/}
}
                      
                      
                    TY - JOUR AU - V. N. Zhermolenko AU - R. Temoltzi-Avila TI - Bulgakov problem for a hyperbolic equation and robust stability JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2021 SP - 23 EP - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a3/ LA - ru ID - VMUMM_2021_4_a3 ER -
V. N. Zhermolenko; R. Temoltzi-Avila. Bulgakov problem for a hyperbolic equation and robust stability. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 23-30. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a3/
