An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 17-22
Voir la notice de l'article provenant de la source Math-Net.Ru
The operator of convolution with a complex-valued integrable kernel in the space of integrable functions is considered; a necessary and sufficient condition for the existence of a maximizer, i.e., a norm one function that maximizes the norm of convolution, is given. Analysis of measurable solutions of Pexider's functional equation defined on subsets of positive measure in $\mathbb{R}^n$ plays the key role.
@article{VMUMM_2021_4_a2,
author = {G. V. Kalachev and S. Yu. Sadov},
title = {An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {17--22},
publisher = {mathdoc},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a2/}
}
TY - JOUR
AU - G. V. Kalachev
AU - S. Yu. Sadov
TI - An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2021
SP - 17
EP - 22
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a2/
LA - ru
ID - VMUMM_2021_4_a2
ER -
%0 Journal Article
%A G. V. Kalachev
%A S. Yu. Sadov
%T An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 17-22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a2/
%G ru
%F VMUMM_2021_4_a2
G. V. Kalachev; S. Yu. Sadov. An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 17-22. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a2/