An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 17-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The operator of convolution with a complex-valued integrable kernel in the space of integrable functions is considered; a necessary and sufficient condition for the existence of a maximizer, i.e., a norm one function that maximizes the norm of convolution, is given. Analysis of measurable solutions of Pexider's functional equation defined on subsets of positive measure in $\mathbb{R}^n$ plays the key role.
@article{VMUMM_2021_4_a2,
     author = {G. V. Kalachev and S. Yu. Sadov},
     title = {An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {17--22},
     year = {2021},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a2/}
}
TY  - JOUR
AU  - G. V. Kalachev
AU  - S. Yu. Sadov
TI  - An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 17
EP  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a2/
LA  - ru
ID  - VMUMM_2021_4_a2
ER  - 
%0 Journal Article
%A G. V. Kalachev
%A S. Yu. Sadov
%T An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 17-22
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a2/
%G ru
%F VMUMM_2021_4_a2
G. V. Kalachev; S. Yu. Sadov. An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 17-22. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a2/

[1] Kalachev G. V., Sadov S. Yu., “O maksimizatorakh operatora svertki v prostranstvakh $L_p$”, Matem. sb., 210:8 (2019), 67–86 | MR | Zbl

[2] Pexider H. W., “Notiz über Functionaltheoreme”, Monatsh. Math. und Phys., 14:1 (1903), 293–301 | DOI | MR | Zbl

[3] Cauchy A. L., Cours d'analyse de l'École Royale Polytechnique, L'Imprimerie Royale, Debure frères, Paris, 1821 | MR

[4] Bradley R. E., Sandifer C. E., Cauchy's Cours d'analyse. An annotated translation, Springer, Dordrecht, 2009 | MR

[5] Atsel Ya., Dombr Zh., Funktsionalnye uravneniya s neskolkimi peremennymi, Fizmatlit, M., 2003

[6] Kuczma M., An introduction to the theory of functional equations and inequalities: Cauchy's equation and Jensen's inequality, 2nd ed., Birkhäuser, Basel, 2009 | MR

[7] Reem D., “Remarks on the Cauchy functional equation and variations of it”, Aequat. math., 91:2 (2017), 237–264 | DOI | MR | Zbl

[8] Schimmack R., “Axiomatische Untersuchungen über die Vektoraddition”, Nova acta Acad. Caesareae Leopoldino, 90 (1909), 5–104 https://www.biodiversitylibrary.org/item/122582#page/15/mode/1up

[9] Fréchet M., “Pri la funkcia ekvacio $f(x+y)=f(x)+f(y)$”, Enseign. math., 15 (1913), 390–393

[10] De Bruijn N. G., “On almost additive functions”, Colloq. Math., 15:1 (1966), 59–63 | DOI | MR | Zbl

[11] Banach S., “Sur l'équation fonctionelle $f(x+y)=f(x)+f(y)$”, Fund. Math., 1 (1920), 123–124 | DOI | Zbl

[12] Gelbaum B., Olmsted Dzh., Kontrprimery v analize, Mir, M., 1967 | MR

[13] Kemperman J. H. B., “A general functional equation”, Trans. Amer. Math. Soc., 86:1 (1957), 28–56 | DOI | MR | Zbl