Effect of surface for es on diffusion in a liquid at the initial time interval of film evolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 55-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The flow of a film of a viscous liquid is considered. The liquid is a weak solution containing a gas phase and a volatile surfactant. The distribution of the latter in the layer is controlled by the diffusion in the liquid volume, the adsorption–desorption processes between the liquid volume and the adsorbed near-surface layer, and the evaporation from the surface into the boundary gaseous medium. The process of penetration of the gas phase from the external flow of the gas flow is specified by the diffusion inside the film.
@article{VMUMM_2021_4_a10,
     author = {A. N. Beloglazkin and V. Ya. Shkadov},
     title = {Effect of surface for es on diffusion in a liquid at the initial time interval of film evolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--59},
     year = {2021},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a10/}
}
TY  - JOUR
AU  - A. N. Beloglazkin
AU  - V. Ya. Shkadov
TI  - Effect of surface for es on diffusion in a liquid at the initial time interval of film evolution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 55
EP  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a10/
LA  - ru
ID  - VMUMM_2021_4_a10
ER  - 
%0 Journal Article
%A A. N. Beloglazkin
%A V. Ya. Shkadov
%T Effect of surface for es on diffusion in a liquid at the initial time interval of film evolution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 55-59
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a10/
%G ru
%F VMUMM_2021_4_a10
A. N. Beloglazkin; V. Ya. Shkadov. Effect of surface for es on diffusion in a liquid at the initial time interval of film evolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 55-59. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a10/

[1] Alekseenko S. V., Nakoryakov V. E., Pokusaev B. G., Volnovoe techenie plenok zhidkosti, Nauka, Novosibirsk, 1992

[2] Levich V. G., Fiziko-khimicheskaya gidrodinamika, Izd-vo AN SSSR, M., 1952 | MR

[3] Velarde M. G., Shkadova V. P., Shkadov V. Ya., “Vliyanie poverkhnostno-aktivnykh veschestv na neustoichivost stekayuschei zhidkoi plenki”, Izv. RAN. Mekhan. zhidkosti i gaza, 2000, no. 4, 56–67 | Zbl

[4] Velarde M. G., Shkadova V. P., Shkadov V. Ya., “Ustoichivost stekayuschei plenki zhidkosti s neravnovesnym adsorbirovannym podsloem rastvorimogo poverkhnostno-aktivnogo veschestva”, Izv. RAN. Mekhan. zhidkosti i gaza, 2003, no. 5, 20–35 | Zbl

[5] Shkadov V. Ya., “Nekotorye metody i zadachi teorii gidrodinamicheskoi ustoichivosti”, Nauch. tr. In-ta mekhaniki MGU, 1973, no. 25

[6] Kholpanov L. P., Shkadov V. Ya., Gidrodinamika i teplomassoobmen s poverkhnostyu razdela, Nauka, M., 1990