@article{VMUMM_2021_4_a1,
author = {V. M. Chikin},
title = {Functions preserving metrics and {Gromov{\textendash}Hausdorff} space},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {11--16},
year = {2021},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a1/}
}
V. M. Chikin. Functions preserving metrics and Gromov–Hausdorff space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 11-16. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a1/
[1] Hausdorff F., Grundzüge der Mengenlehre, Veit, Leipzig, 1914 ; reprinted: Chelsea, 1949 | MR | Zbl
[2] Edwards D., “The structure of superspace”, Studies in Topology, eds. N. M. Stavrakas, K. R. Allen, Academic Press Inc., N.Y.–London–San Francisco, 1975 | MR
[3] Gromov M., Groups of polynomial growth and expanding maps, Publications Mathematiques I.H.E.S., 53, 1981 | MR | Zbl
[4] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004 | MR
[5] Ivanov A. O., Tuzhilin A. A., Geometriya rasstoyanii Khausdorfa i Gromova–Khausdorfa: sluchai kompaktov, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU, M., 2017
[6] Wilson W. A., “On certain types of continuous transformations of metric spaces”, Amer. J. Math., 57 (1935), 62–68 | DOI | MR
[7] Sreenivasan T. K., “Some properties of distance functions”, J. Indian Math. Soc. (N.S.), 11 (1947), 38–43 | MR | Zbl
[8] Kelley J. L., General topology, Van Nostrand, N.Y., 1955 | MR | Zbl
[9] Dobos J., Metric preserving functions, Kosice Technical University, 1998
[10] Chikin V. M., “Minimalnye derevya Shteinera v malykh okrestnostyakh tochek rimanovykh mnogoobrazii”, Matem. sb., 208:7 (2017), 145–171 | MR | Zbl