Functions preserving metrics and Gromov–Hausdorff space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 11-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is focused on the study of deformations of metric spaces induced by metric preserving functions. We show that continuous metric preserving functions correctly define maps of the Gromov–Hausdorff space to themselves, and these maps have several interesting properties, in particular, they are continuous and they are Lipschitzian if and only if the corresponding metric preserving functions are Lipschitzian. We also study one-parameter deformations of arbitrary metrics defined by metric preserving functions and provide a criterion for the continuity of lengths of curves under such deformations.
@article{VMUMM_2021_4_a1,
     author = {V. M. Chikin},
     title = {Functions preserving metrics and {Gromov{\textendash}Hausdorff} space},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--16},
     year = {2021},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a1/}
}
TY  - JOUR
AU  - V. M. Chikin
TI  - Functions preserving metrics and Gromov–Hausdorff space
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 11
EP  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a1/
LA  - ru
ID  - VMUMM_2021_4_a1
ER  - 
%0 Journal Article
%A V. M. Chikin
%T Functions preserving metrics and Gromov–Hausdorff space
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 11-16
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a1/
%G ru
%F VMUMM_2021_4_a1
V. M. Chikin. Functions preserving metrics and Gromov–Hausdorff space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 11-16. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a1/

[1] Hausdorff F., Grundzüge der Mengenlehre, Veit, Leipzig, 1914 ; reprinted: Chelsea, 1949 | MR | Zbl

[2] Edwards D., “The structure of superspace”, Studies in Topology, eds. N. M. Stavrakas, K. R. Allen, Academic Press Inc., N.Y.–London–San Francisco, 1975 | MR

[3] Gromov M., Groups of polynomial growth and expanding maps, Publications Mathematiques I.H.E.S., 53, 1981 | MR | Zbl

[4] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004 | MR

[5] Ivanov A. O., Tuzhilin A. A., Geometriya rasstoyanii Khausdorfa i Gromova–Khausdorfa: sluchai kompaktov, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU, M., 2017

[6] Wilson W. A., “On certain types of continuous transformations of metric spaces”, Amer. J. Math., 57 (1935), 62–68 | DOI | MR

[7] Sreenivasan T. K., “Some properties of distance functions”, J. Indian Math. Soc. (N.S.), 11 (1947), 38–43 | MR | Zbl

[8] Kelley J. L., General topology, Van Nostrand, N.Y., 1955 | MR | Zbl

[9] Dobos J., Metric preserving functions, Kosice Technical University, 1998

[10] Chikin V. M., “Minimalnye derevya Shteinera v malykh okrestnostyakh tochek rimanovykh mnogoobrazii”, Matem. sb., 208:7 (2017), 145–171 | MR | Zbl