A new estimate of double Fourier coefficients for functions of bounded generalized variation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Classes of functions of two variables having generalized bounded variation in the sense of symmetric spaces of sequences and matrices are considered. Estimates of Fourier coefficients are obtained for functions from these classes.
@article{VMUMM_2021_4_a0,
     author = {N. A. Zhukovskii},
     title = {A new estimate of double {Fourier} coefficients for functions of bounded generalized variation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--10},
     year = {2021},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a0/}
}
TY  - JOUR
AU  - N. A. Zhukovskii
TI  - A new estimate of double Fourier coefficients for functions of bounded generalized variation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 3
EP  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a0/
LA  - ru
ID  - VMUMM_2021_4_a0
ER  - 
%0 Journal Article
%A N. A. Zhukovskii
%T A new estimate of double Fourier coefficients for functions of bounded generalized variation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 3-10
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a0/
%G ru
%F VMUMM_2021_4_a0
N. A. Zhukovskii. A new estimate of double Fourier coefficients for functions of bounded generalized variation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a0/

[1] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965

[2] Schramm M., Waterman D., “On the magnitude of Fourier coefficients”, Proc. Amer. Math. Soc., 85:3 (1982), 407–410 | DOI | MR | Zbl

[3] Berezhnoi E. I., “Prostranstva funktsii obobschennoi ogranichennoi variatsii. II. Voprosy ravnomernoi skhodimosti ryadov Fure”, Sib. matem. zhurn., 42:3 (2001), 515–532 | MR | Zbl

[4] Moricz F., “Order of magnitude of double Fourier coefficients of functions of bounded variation”, Analysis (Munich), 22:4 (2002), 335–345 | MR | Zbl

[5] Fulop V., Moricz F., “Order of magnitude of multiple Fourier coefficients of functions of bounded variation”, Acta math. hung., 104:1–2 (2004), 95–104 | DOI | MR | Zbl

[6] Bakhvalov A. N., “O koeffitsientakh Fure funktsii iz mnogomernykh klassov ogranichennoi $\Lambda$-variatsii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2011, no. 1, 10–18 | Zbl

[7] Vyas R. G., Darji K. N., “On multiple Fourier coefficients of functions of $\phi\Lambda$-bounded variation”, Math. Inequal. Appl., 17:3 (2014), 1153–1160 | MR | Zbl

[8] Berezhnoi E. I., “Prostranstva funktsii obobschennoi ogranichennoi variatsii. I. Teoremy vlozheniya. Otsenki konstant Lebega”, Sib. matem. zhurn., 40:5 (1999), 997–1011 | MR | Zbl