@article{VMUMM_2021_4_a0,
author = {N. A. Zhukovskii},
title = {A new estimate of double {Fourier} coefficients for functions of bounded generalized variation},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--10},
year = {2021},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a0/}
}
TY - JOUR AU - N. A. Zhukovskii TI - A new estimate of double Fourier coefficients for functions of bounded generalized variation JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2021 SP - 3 EP - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a0/ LA - ru ID - VMUMM_2021_4_a0 ER -
N. A. Zhukovskii. A new estimate of double Fourier coefficients for functions of bounded generalized variation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2021_4_a0/
[1] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965
[2] Schramm M., Waterman D., “On the magnitude of Fourier coefficients”, Proc. Amer. Math. Soc., 85:3 (1982), 407–410 | DOI | MR | Zbl
[3] Berezhnoi E. I., “Prostranstva funktsii obobschennoi ogranichennoi variatsii. II. Voprosy ravnomernoi skhodimosti ryadov Fure”, Sib. matem. zhurn., 42:3 (2001), 515–532 | MR | Zbl
[4] Moricz F., “Order of magnitude of double Fourier coefficients of functions of bounded variation”, Analysis (Munich), 22:4 (2002), 335–345 | MR | Zbl
[5] Fulop V., Moricz F., “Order of magnitude of multiple Fourier coefficients of functions of bounded variation”, Acta math. hung., 104:1–2 (2004), 95–104 | DOI | MR | Zbl
[6] Bakhvalov A. N., “O koeffitsientakh Fure funktsii iz mnogomernykh klassov ogranichennoi $\Lambda$-variatsii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2011, no. 1, 10–18 | Zbl
[7] Vyas R. G., Darji K. N., “On multiple Fourier coefficients of functions of $\phi\Lambda$-bounded variation”, Math. Inequal. Appl., 17:3 (2014), 1153–1160 | MR | Zbl
[8] Berezhnoi E. I., “Prostranstva funktsii obobschennoi ogranichennoi variatsii. I. Teoremy vlozheniya. Otsenki konstant Lebega”, Sib. matem. zhurn., 40:5 (1999), 997–1011 | MR | Zbl