Explosion problems for surface charges
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 48-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A plane problem of the formation of a crater as a result of the explosion of a line charge on the surface of the ground is investigated within the solid–liquid formulation. The explosion crater is supposed to be a polygonal line with two angular points. The exact solution to the problem is constructed. A parametric analysis is performed. The calculated profiles of the explosion crater are presented for some governing parameters of the problem. Restrictions on the governing parameters are given, limiting cases are considered.
@article{VMUMM_2021_2_a9,
     author = {V. A. Maksimenko and S. L. Tolokonnikov},
     title = {Explosion problems for surface charges},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--52},
     year = {2021},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a9/}
}
TY  - JOUR
AU  - V. A. Maksimenko
AU  - S. L. Tolokonnikov
TI  - Explosion problems for surface charges
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 48
EP  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a9/
LA  - ru
ID  - VMUMM_2021_2_a9
ER  - 
%0 Journal Article
%A V. A. Maksimenko
%A S. L. Tolokonnikov
%T Explosion problems for surface charges
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 48-52
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a9/
%G ru
%F VMUMM_2021_2_a9
V. A. Maksimenko; S. L. Tolokonnikov. Explosion problems for surface charges. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 48-52. http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a9/

[1] Lavrentev M.A., Variatsionnyi metod v kraevykh zadachakh dlya sistem uravnenii ellipticheskogo tipa, Izd-vo AN SSSR, M., 1962

[2] Lavrentev M.A., Shabat B.V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973 | MR

[3] Kuznetsov V.M., Matematicheskie modeli vzryvnogo dela, Nauka, Novosibirsk, 1977

[4] Ilinskii N.B., Potashev A.V., Kraevye zadachi teorii vzryva, Izd-vo Kazan. un-ta, Kazan, 1986

[5] Kuznetsov V.M., “O forme voronki vybrosa pri vzryve na poverkhnosti grunta”, Prikl. matem. i tekhn. fiz., 1960, no. 3, 152–156

[6] Ilinskii N.B., Potashev A.V., Rubinovskii A.V., Fischenko P.A., “Reshenie nekotorykh zadach teorii vzryva v impulsno-gidrodinamicheskoi postanovke”, Tr. seminara po kraevym zadacham, 14, Izd-vo Kazan. un-ta, Kazan, 1977, 98–109

[7] Kuznetsov V.M., Polyak E.B., Sher E.N., “O gidrodinamicheskom vzaimodeistvii shnurovykh zaryadov VV”, Prikl. matem. i tekhn. fiz., 1975, no. 5, 93–101

[8] Polyak E.B., Sher E.N., “O forme voronki vybrosa pri vzryve shnurovogo zaryada v dvukhsloinoi srede”, Prikl. matem. i tekhn. fiz., 1973, no. 2, 143–146

[9] Kuznetsov V.M., Polyak E.B., “Impulsno-gidrodinamicheskie skhemy rascheta vzryva na vybros shnurovykh zaryadov VV”, Fiz.-tekhn. probl. razrabotki poleznykh iskopaemykh, 1973, no. 4, 32–39

[10] Tolokonnikov S.L., “O forme voronki vybrosa pri vzryve na poverkhnosti grunta shnurovogo zaryada klinovidnoi formy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 6, 82–85 | Zbl

[11] Tolokonnikov S.L., “K zadache o vzryve poverkhnostnogo shnurovogo zaryada”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 1, 75–79 | Zbl

[12] Gurevich M.I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979