Frames as continuous redundant codes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 39-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider expansions in a finite frame as a continuous linear redundant coding and show that coding of an element from an $N$-dimensional space with a frame consisting of $(N+M)$ elements provides detection of up to $M$ errors and correction of up to $\left\lfloor\frac{M}{2}\right\rfloor$ errors. We also note that these results are sharp. The presented results are direct continuous analogues of classical statements from the discrete coding theory.
@article{VMUMM_2021_2_a7,
     author = {Al. R. Valiullin and Ar. R. Valiullin and V. V. Galatenko},
     title = {Frames as continuous redundant codes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--43},
     year = {2021},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a7/}
}
TY  - JOUR
AU  - Al. R. Valiullin
AU  - Ar. R. Valiullin
AU  - V. V. Galatenko
TI  - Frames as continuous redundant codes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 39
EP  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a7/
LA  - ru
ID  - VMUMM_2021_2_a7
ER  - 
%0 Journal Article
%A Al. R. Valiullin
%A Ar. R. Valiullin
%A V. V. Galatenko
%T Frames as continuous redundant codes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 39-43
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a7/
%G ru
%F VMUMM_2021_2_a7
Al. R. Valiullin; Ar. R. Valiullin; V. V. Galatenko. Frames as continuous redundant codes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 39-43. http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a7/

[1] Peterson W.W., Weldon E.J. Jr., Error-correcting codes, 2nd ed., The MIT Press, Cambridge, MA, 1972 | MR | Zbl

[2] Huffman V.C., Pless V., Fundamentals of error-correcting codes, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[3] Kløve T., Codes for error detection, World Scientific Publishing Company, Singapore, 2007 | MR | Zbl

[4] Tomlinson M., Tjhai C.J., Ambroze M.A., Ahmed M., Jibril M., Error-correction coding and decoding, Springer International Publishing, Cham, 2017 | MR | Zbl

[5] Marshall T., “Coding of real-number sequences for error correction: a digital signal processing problem”, IEEE J. Sel. Areas Communs., 2 (1984), 381–392 | DOI

[6] Shiu J., Wu J.L., “Class of majority decodable real-number codes”, IEEE Trans. Communs., 44:3 (1996), 281–283 | DOI | Zbl

[7] He Z., Ogawa T., Haseyama M., Zhao X., Zhang S., “A compressed sensing-based low-density parity-check real-number code”, Radioengineering, 22:3 (2013), 851–860

[8] Galatenko V.V., “Ob ortorekursivnom razlozhenii s oshibkami v vychislenii koeffitsientov”, Izv. RAN. Ser. matem., 69:1 (2005), 3–16 | MR | Zbl

[9] Galatenko V.V., Livshits E.D., “Obobschennye priblizhennye slabye zhadnye algoritmy”, Matem. zametki, 78:2 (2005), 186–201 | Zbl

[10] P.G. Casazza, G. Kutyniok (eds.), Finite frames: theory and applications, Springer-Birkhäuser, N.Y., 2013 | MR

[11] K.A. Okoudjou (ed.), Finite frame theory: a complete introduction to overcompleteness, Amer. Math. Soc., Providence, RI, 2016 | MR | Zbl

[12] Goyal V.K., Kovačević J., Kelner J.A., “Quantized frame expansions with erasures”, Appl. and Comput. Harmon. Anal., 10:3 (2001), 203–233 | DOI | MR | Zbl

[13] Holmes R.B., Paulsen V.I., “Optimal frames for erasures”, Linear Algebra and Its Appl., 377 (2004), 31–51 | DOI | MR | Zbl

[14] Han D., Sun W., “Reconstruction of signals from frame coefficients with erasures at unknown locations”, IEEE Trans. Inf. Theory, 60:7 (2014), 4013–4025 | DOI | MR | Zbl

[15] Han D., Lv F., Sun W., “Recovery of signals from unordered partial frame coefficients”, Appl. and Comput. Harmon. Anal., 44:1 (2018), 38–58 | DOI | MR | Zbl

[16] Kovačević J., Chebira A., “An introduction to frames”, Found. Trends Signal Process., 2:1 (2008), 1–94