Plane sets that are Chebyshev in some norm
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 35-39
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe plane sets, each of which is Chebyshev in some norm.
@article{VMUMM_2021_2_a6,
author = {K. S. Shklyaev},
title = {Plane sets that are {Chebyshev} in some norm},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {35--39},
year = {2021},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a6/}
}
K. S. Shklyaev. Plane sets that are Chebyshev in some norm. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a6/
[1] Alimov A.R., Tsarkov I.G., Geometricheskaya teoriya priblizhenii, v. Klassicheskie ponyatiya i konstruktsii priblizheniya mnozhestvami, OntoPrint, M., 2017
[2] Moore R.L., “Concerning triods in the plane and the junction points of plane continua”, Proc. Nat. Acad. Sci. USA, 14 (1928), 85–88 | DOI | MR | Zbl
[3] Alimov A.R., “Geometricheskoe stroenie chebyshevskikh mnozhestv v $l^{\infty}(n)$”, Funkts. analiz i ego pril., 39:1 (2005), 1–10 | MR | Zbl