Plane sets that are Chebyshev in some norm
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 35-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe plane sets, each of which is Chebyshev in some norm.
@article{VMUMM_2021_2_a6,
     author = {K. S. Shklyaev},
     title = {Plane sets that are {Chebyshev} in some norm},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--39},
     year = {2021},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a6/}
}
TY  - JOUR
AU  - K. S. Shklyaev
TI  - Plane sets that are Chebyshev in some norm
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 35
EP  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a6/
LA  - ru
ID  - VMUMM_2021_2_a6
ER  - 
%0 Journal Article
%A K. S. Shklyaev
%T Plane sets that are Chebyshev in some norm
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 35-39
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a6/
%G ru
%F VMUMM_2021_2_a6
K. S. Shklyaev. Plane sets that are Chebyshev in some norm. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a6/

[1] Alimov A.R., Tsarkov I.G., Geometricheskaya teoriya priblizhenii, v. Klassicheskie ponyatiya i konstruktsii priblizheniya mnozhestvami, OntoPrint, M., 2017

[2] Moore R.L., “Concerning triods in the plane and the junction points of plane continua”, Proc. Nat. Acad. Sci. USA, 14 (1928), 85–88 | DOI | MR | Zbl

[3] Alimov A.R., “Geometricheskoe stroenie chebyshevskikh mnozhestv v $l^{\infty}(n)$”, Funkts. analiz i ego pril., 39:1 (2005), 1–10 | MR | Zbl