Influence of the choice of the class of gauge functions on the properties of the Henstock–Kurzweil integral
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 32-35
Cet article a éte moissonné depuis la source Math-Net.Ru
Properties of the Henstock–Kurzweil integral are considered with a gauge under imposed restrictions. A proof of the assertion on interrelations between classes of integrable functions and classes of gauges is presented for several particular cases.
@article{VMUMM_2021_2_a5,
author = {S. N. Kopylov},
title = {Influence of the choice of the class of gauge functions on the properties of the {Henstock{\textendash}Kurzweil} integral},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {32--35},
year = {2021},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a5/}
}
TY - JOUR AU - S. N. Kopylov TI - Influence of the choice of the class of gauge functions on the properties of the Henstock–Kurzweil integral JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2021 SP - 32 EP - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a5/ LA - ru ID - VMUMM_2021_2_a5 ER -
%0 Journal Article %A S. N. Kopylov %T Influence of the choice of the class of gauge functions on the properties of the Henstock–Kurzweil integral %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2021 %P 32-35 %N 2 %U http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a5/ %G ru %F VMUMM_2021_2_a5
S. N. Kopylov. Influence of the choice of the class of gauge functions on the properties of the Henstock–Kurzweil integral. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 32-35. http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a5/
[1] Lukashenko T.P., Skvortsov V.A., Solodov A.P., Obobschennye integraly, 2-e izd., Knizhnyi dom “Librokom”, M., 2011
[2] Bullen P., “Queries 178”, Real Analysis Exchange, 12:2 (1986–87), 393
[3] Foran J., Meinershagen S., “Some answers to a question of P. Bullen”, Real Analysis Exchange, 13:1 (1987–88), 265–277 | DOI | MR
[4] Pfeffer W.F., “A note on the generalized Riemann integral”, Proc. Amer. Math. Soc., 103:4 (1988), 1161–1166 | DOI | MR | Zbl
[5] Buczolich Z., “Nearly upper semicontinuous gauge functions in $\mathbb{R}^n$”, Real Analysis Exchange, 13:2 (1987–88), 436–440 | DOI | MR
[6] Burk F. E., A garden of integrals, The Mathematical Association of America, Washington, 2007 | MR | Zbl