A method to find stress intensity coefficients for spatial cracks
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 16-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mutual influence of round and elliptical cracks in three-dimensional space is investigated. The stress intensity factors for various problems are calculated. The dependence of the stress intensity factors on the ratio of the semiaxes of the ellipse is investigated. The computational error does not exceed 1%.
@article{VMUMM_2021_2_a2,
     author = {A. V. Zvyagin and D. I. Panfilov and A. A. Luzhin and A. A. Shamina},
     title = {A method to find stress intensity coefficients for spatial cracks},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {16--22},
     year = {2021},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a2/}
}
TY  - JOUR
AU  - A. V. Zvyagin
AU  - D. I. Panfilov
AU  - A. A. Luzhin
AU  - A. A. Shamina
TI  - A method to find stress intensity coefficients for spatial cracks
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 16
EP  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a2/
LA  - ru
ID  - VMUMM_2021_2_a2
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%A D. I. Panfilov
%A A. A. Luzhin
%A A. A. Shamina
%T A method to find stress intensity coefficients for spatial cracks
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 16-22
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a2/
%G ru
%F VMUMM_2021_2_a2
A. V. Zvyagin; D. I. Panfilov; A. A. Luzhin; A. A. Shamina. A method to find stress intensity coefficients for spatial cracks. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 16-22. http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a2/

[1] Akulich A.V., Zvyagin A.V., Shamina A.A., “Chislennoe modelirovanie vzaimodeistviya diskoobraznykh treschin v trekhmernom uprugom prostranstve”, XVII Mezhdunar. konf. «Supervychisleniya i matematicheskoe modelirovanie», RFYaTs-VNIIEF, Sarov, 2018

[2] Zvyagin A.V., Smirnov N.N., Panfilov D.I., Shamina A.A., “Metod granichnykh elementov dlya chislennogo resheniya trekhmernykh zadach mekhaniki treschin”, Vestn. kibernetiki, 30:2 (2018), 18–31

[3] Zvyagin A.V., Panfilov D.I., Shamina A.A., “Vzaimnoe vliyanie diskoobraznykh treschin v trekhmernom uprugom prostranstve”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 4, 34–41 | Zbl

[4] Murakami Yu., Spravochnik po koeffitsientam intensivnosti napryazhenii, V 2 t., v. 2, Mir, M., 1990

[5] Fabrikant V.I., “Close interaction of coplanar circular cracks in an elastic medium”, Acta mech., 1987, no. 67, 39–59 | DOI | MR | Zbl

[6] Fabrikant V.I., “Close interaction of coplanar circular cracks under shear loading”, Comput. Mech., 4 (1989), 181–197 | DOI | MR | Zbl

[7] Fabrikant V.I., “Interaction of a parallel circular cracks subjected to arbitrary loading in transversely isotropic elastic space”, Appl. Anal., 66 (1997), 275–290 | DOI | MR

[8] Goldshtein R.V., “Ploskaya treschina proizvolnogo razryva v uprugoi srede”, Izv. AN SSSR. Mekhan. tverdogo tela, 1979, no. 3, 111–126