Theory of families of polytopes: fullerenes and Pogorelov polytopes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 61-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is a review of the results of the eponymous cycle of author's works marked by the I. I. Shuvalov I degree prize 2018 for scientific research and recent results. We study families of three-dimensional simple polytopes defined by the condition of cyclic $k$-edge-connectivity, in particular, flag polytopes and Pogorelov polytopes, as well as related families of fullerenes and ideal right-angled hyperbolic polytopes. We describe methods for constructing families using operations of cutting off edges and a connected sum along faces, a construction of fullerenes using growth operations, a construction of cohomologically rigid families of three-dimensional and six-dimensional manifolds, and Thurston's geometrization of orientable three-dimensional manifolds corresponding to polytopes.
@article{VMUMM_2021_2_a12,
     author = {N. Yu. Erokhovets},
     title = {Theory of families of polytopes: fullerenes and {Pogorelov} polytopes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {61--72},
     year = {2021},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - Theory of families of polytopes: fullerenes and Pogorelov polytopes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 61
EP  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/
LA  - ru
ID  - VMUMM_2021_2_a12
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T Theory of families of polytopes: fullerenes and Pogorelov polytopes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 61-72
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/
%G ru
%F VMUMM_2021_2_a12
N. Yu. Erokhovets. Theory of families of polytopes: fullerenes and Pogorelov polytopes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 61-72. http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/

[1] Tsigler G.M., Teoriya mnogogrannikov, MTsNMO, M., 2014

[2] Aleksandrov A.D., Vypuklye mnogogranniki, Nauka, Novosibirsk, 2007 | MR

[3] Tutte W.T., “A non-Hamiltonian planar graph”, Acta math. Acad. sci. hung., 11 (1960), 371–375 | DOI | MR | Zbl

[4] Andreev E.M., “O vypuklykh mnogogrannikakh v prostranstvakh Lobachevskogo”, Matem. sb., 81 (123):3 (1970), 445–478 | Zbl

[5] Prasolov V.V., Geometriya Lobachevskogo, MTsNMO, M., 2004

[6] Pogorelov A.V., “O pravilnom razbienii prostranstva Lobachevskogo”, Matem. zametki, 1:1 (1967), 3–8 | MR

[7] Davis M.W., Okun B., “Vanishing theorems and conjectures for the $2$-homology of right-angled Coxeter groups”, Geometry and Topology, 5 (2001), 7–74 | DOI | MR | Zbl

[8] Erokhovets N.Yu., “Trekhmernye pryamougolnye mnogogranniki konechnogo ob'ema v prostranstve Lobachevskogo: kombinatorika i konstruktsii”, Tr. Matem. in-ta RAN, 305, 2019, 86–147 | MR | Zbl

[9] Andreev E.M., “O vypuklykh mnogogrannikakh konechnogo ob'ema v prostranstve Lobachevskogo”, Matem. sb., 83(125):2(10) (1970), 256–260 | Zbl

[10] Mednykh A.D., Vesnin A.Yu., “On three-dimensional hyperbolic manifolds of Löbell type”, Complex analysis and applications 85 (Varna, 1985), Publ. House Bulgar. Acad. Sci., Sofia, 1986, 440–446 | MR

[11] Vesnin A.Yu., “Trekhmernye giperbolicheskie mnogoobraziya tipa Lebellya”, Sib. matem. zhurn., 28:5 (1987), 50–53 | MR

[12] Vesnin A.Yu., “Pryamougolnye mnogogranniki i trekhmernye giperbolicheskie mnogoobraziya”, Uspekhi matem. nauk., 72:2(434) (2017), 147–190 | MR | Zbl

[13] Dǒslić T., “On lower bounds of number of perfect matchings in fullerene graphs”, J. Math. Chem., 24:4 (1998), 359–364 | DOI | MR

[14] Dǒslić T., “Cyclical edge-connectivity of fullerene graphs and $(k, 6)$-cages”, J. Math. Chem., 33:2 (2003), 103–112 | DOI | MR

[15] Thurston W.P., “Shapes of polyhedra and triangulations of the sphere”, The Epstein birthday schrift, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998, 511–549 | DOI | MR | Zbl

[16] Rukhovich A.D., “O roste chisla fullerenov”, Uspekhi matem. nauk, 73:4(442) (2018), 177–178 | MR | Zbl

[17] Birkhoff G.D., “The reducibility of maps”, Amer. J. Math., 35:2 (1913), 115–128 | DOI | MR | Zbl

[18] Bukhshtaber V.M., Erokhovets N.Yu., Masuda M., Panov T.E., Pak S., “Kogomologicheskaya zhestkost mnogoobrazii, zadavaemykh trekhmernymi mnogogrannikami”, Uspekhi matem. nauk, 72:2(434) (2017), 3–66 | MR | Zbl

[19] Bukhshtaber V.M., Erokhovets N.Yu., “Konstruktsii semeistv trekhmernykh mnogogrannikov, kharakteristicheskie fragmenty fullerenov i mnogogranniki Pogorelova”, Izv. RAN. Ser. matem., 81:5 (2017), 15–91 | MR | Zbl

[20] Deza M., Dyutur Sikirich M., Shtogrin M.I., “Fullereny i disk-fullereny”, Uspekhi matem. nauk, 68:4(412) (2013), 69–128 | MR | Zbl

[21] Buchstaber V.M., Erokhovets N.Yu., “Fullerenes, polytopes and toric topology”, Combinatorial and toric homotopy: Introductory lectures, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Sci. Publ., River Edge, NJ, USA, 2017, 67–178, arXiv: 1609.02949 | MR

[22] Erokhovets N., “Construction of fullerenes and Pogorelov polytopes with $5$-, $6$- and one $7$-gonal face”, Symmetry, 10:3 (2018), 67 | DOI | MR | Zbl

[23] Eberhard V., Zur morphologie der polyheder, Leipzig, 1891

[24] Kotzig A., “Regularly connected trivalent graphs without non-trivial cuts of cardinality $3$”, Acta. Fac. rerum natur. Univ. comen. Math. Publ., 21 (1969), 1–14 | MR | Zbl

[25] Bukhshtaber V.M., Erokhovets N.Yu., “Usecheniya prostykh mnogogrannikov i prilozheniya”, Tr. Matem. in-ta RAN, 289, 2015, 115–144 | Zbl

[26] Volodin V.D., “Kombinatorika flagovykh simplitsialnykh $3$-mnogogrannikov”, Uspekhi matem. nauk, 70:1(421) (2015), 81–182 | MR

[27] Barnette D., “On generation of planar graphs”, Discrete Math., 7:3–4 (1974), 199–208 | DOI | MR | Zbl

[28] Rivin I., “A characterization of ideal polyhedra in hyperbolic $3$-space”, Ann. Math. Second Ser., 143:1 (1996), 51–70 | DOI | MR | Zbl

[29] Brinkmann G., Greenberg S., Greenhill C., McKay B.D., Thomas R., Wollan P., “Generation of simple quadrangulations of the sphere”, Discrete Math., 305 (2005), 33–54 | DOI | MR | Zbl

[30] Barnette D., “Generating the $c^*$-$5$-connected graphs”, Isr. J. Math., 28:1–2 (1977), 151–160 | DOI | MR | Zbl

[31] Butler J.W., “A generation procedure for the simple $3$-polytopes with cyclically $5$-connected graphs”, Canad. J. Math., XXVI:3 (1974), 686–708 | DOI | MR | Zbl

[32] Inoue T., “Organizing volumes of right-angled hyperbolic polyhedra”, Algebr. Geometry and Topol., 8:3 (2008), 1523–1565 | DOI | MR | Zbl

[33] Inoue T., “Exploring the list of smallest right-angled hyperbolic polyhedra”, Experimental Mathematics, 2019, arXiv: 1512.01761 | DOI | MR

[34] Kardoš F., Skrekovski R., “Cyclic edge-cuts in fullerene graphs”, J. Math. Chem., 22 (2008), 121–132 | DOI | MR

[35] Kutnar K., Marušič D., “On cyclic edge-connectivity of fullerenes”, Discrete Appl. Math., 156 (2008), 1661–1669 | DOI | MR | Zbl

[36] Brinkmann G., Graver J.E., Justus C., “Numbers of faces in disordered patches”, J. Math. Chem., 45:2 (2009), 263–278 | DOI | MR | Zbl

[37] Hasheminezhad M., Fleischner H., McKay B.D., “A universal set of growth operations for fullerenes”, Chem. and Phys. Lett., 464 (2008), 118–121 | DOI

[38] Brinkmann G., Goedgebeur J., McKay B.D., “The generation of fullerenes”, J. Chem. Inf. Model., 52 (2012), 2910–2918, arXiv: 1207.7010 | DOI | MR

[39] Huang J.Y., Ding F., Jiao K., Yakobson B.I., “Real time microscopy, kinetics, and mechanism of giant fullerene evaporation”, Phys. Rev. Lett., 99 (2007), 175503 | DOI

[40] Endo M., Kroto H.W., “Formation of carbon nanofibers”, J. Phys. and Chem., 96 (1992), 6941–6944 | DOI

[41] Löbell F., “Beispiele geschlossener dreidimensionaler Clifford-Kleinischer Räume negativer Krümmung”, Ber. Verh. Sächs. Akad. Leipzig Math.-Phys. Kl., 83 (1931), 167–174

[42] Buchstaber V.M., Panov T.E., Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, USA, 2015 | DOI | MR | Zbl

[43] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[44] Fan F., Wang X., On the cohomology of moment-angle complexes associated to Gorenstein* complexes, arXiv: 1508.00159

[45] Fan F., Ma J., Wang X., $B$-rigidity of flag $2$-spheres without $4$-belt, arXiv: 1511.03624

[46] Erokhovets N., “$B$-rigidity of the property to be an almost Pogorelov polytope”, Topology, Geometry, and Dynamics: Rokhlin Memorial, Contemporary Mathematics, 772, American Mathematical Society, arXiv: 2004.04873

[47] Bosio F., Meersseman L., “Real quadrics in $\mathbb{C}^n$, complex manifolds and convex polytopes”, Acta Math., 197 (2006), 53–127 | DOI | MR | Zbl

[48] Bosio F., Two transformations of simple polytopes preserving moment-angle manifolds, arXiv: 1708.00399

[49] Erokhovets N., $B$-rigidity of ideal almost Pogorelov polytopes, arXiv: 2005.07665

[50] Dynkin E.B., Uspenskii V.A., Matematicheskie besedy, GITTL, M.–L., 1952

[51] Aschenbrenner M., Friedl S., Wilton H., $3$-manifold groups, EMS Series of Lectures in Mathematics, 2015 | MR | Zbl

[52] Nakayama H., Nishimura Y., “The orientability of small covers and coloring simple polytopes”, Osaka J. Math., 42:1 (2005), 243–256 | MR | Zbl

[53] Erokhovets N., Canonical geometrization of $3$-manifolds realizable as small covers, arXiv: 2011.11628

[54] Schroeder T.A., “Geometrization of $3$-dimensional Coxeter orbifolds and Singer's conjecture”, Geom. Dedicata, 140 (2009), 163–174 | DOI | MR | Zbl

[55] Panov T.E., Verevkin Ya.A., “Poliedralnye proizvedeniya i kommutanty pryamougolnykh grupp Artina i Koksetera”, Matem. sb., 207:11 (2016), 105–126 | MR | Zbl

[56] Wu L., Yu L., “Fundamental groups of small covers revisited”, IMRN, 2019, rnz034, arXiv: 1712.00698 | MR

[57] Wu L., Atoroidal manifolds in small covers, arXiv: 1812.09896

[58] Lu J., Wu L., Topology and geometry of flagness and beltness of simple orbifolds, arXiv: 2009.11034

[59] Davis M., Januszkiewicz T., Scott R., “Nonpositive curvature of blow-ups”, Selecta Math., 4:4 (1998), 491–547 | DOI | MR | Zbl

[60] Davis M., The geometry and topology of Coxeter groups, London Math. Soc. Monogr. Ser., 32, Princeton University Press, 2008 | MR | Zbl

[61] Gromov M., “Hyperbolic groups”, Essays in group theory, Mathematical Sciences Research Institute Publications, 8, Springer, N.Y., 1987, 75–263 | DOI | MR

[62] Mednykh A.D, “Three-dimensional hyperelliptic manifolds”, Ann. Global. Anal. Geom., 8:1 (1990), 13–19 | DOI | MR | Zbl

[63] Vinberg E.B., Shvartsman O.V., “Diskretnye gruppy dvizhenii prostranstv postoyannoi krivizny”, Geometriya-2, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 29, VINITI, M., 1988, 147–259