Theory of families of polytopes: fullerenes and Pogorelov polytopes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 61-72

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is a review of the results of the eponymous cycle of author's works marked by the I. I. Shuvalov I degree prize 2018 for scientific research and recent results. We study families of three-dimensional simple polytopes defined by the condition of cyclic $k$-edge-connectivity, in particular, flag polytopes and Pogorelov polytopes, as well as related families of fullerenes and ideal right-angled hyperbolic polytopes. We describe methods for constructing families using operations of cutting off edges and a connected sum along faces, a construction of fullerenes using growth operations, a construction of cohomologically rigid families of three-dimensional and six-dimensional manifolds, and Thurston's geometrization of orientable three-dimensional manifolds corresponding to polytopes.
@article{VMUMM_2021_2_a12,
     author = {N. Yu. Erokhovets},
     title = {Theory of families of polytopes: fullerenes and {Pogorelov} polytopes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {61--72},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - Theory of families of polytopes: fullerenes and Pogorelov polytopes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 61
EP  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/
LA  - ru
ID  - VMUMM_2021_2_a12
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T Theory of families of polytopes: fullerenes and Pogorelov polytopes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 61-72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/
%G ru
%F VMUMM_2021_2_a12
N. Yu. Erokhovets. Theory of families of polytopes: fullerenes and Pogorelov polytopes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 61-72. http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/