Theory of families of polytopes: fullerenes and Pogorelov polytopes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 61-72
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is a review of the results of the eponymous cycle of author's works marked by the I. I. Shuvalov I degree prize 2018 for scientific research and recent results. We study families of three-dimensional simple polytopes defined by the condition of cyclic $k$-edge-connectivity, in particular, flag polytopes and Pogorelov polytopes, as well as related families of fullerenes and ideal right-angled hyperbolic polytopes. We describe methods for constructing families using operations of cutting off edges and a connected sum along faces, a construction of fullerenes using growth operations, a construction of cohomologically rigid families of three-dimensional and six-dimensional manifolds, and Thurston's geometrization of orientable three-dimensional manifolds corresponding to polytopes.
@article{VMUMM_2021_2_a12,
author = {N. Yu. Erokhovets},
title = {Theory of families of polytopes: fullerenes and {Pogorelov} polytopes},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {61--72},
publisher = {mathdoc},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/}
}
TY - JOUR AU - N. Yu. Erokhovets TI - Theory of families of polytopes: fullerenes and Pogorelov polytopes JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2021 SP - 61 EP - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/ LA - ru ID - VMUMM_2021_2_a12 ER -
N. Yu. Erokhovets. Theory of families of polytopes: fullerenes and Pogorelov polytopes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2021), pp. 61-72. http://geodesic.mathdoc.fr/item/VMUMM_2021_2_a12/