On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 39-46
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Applicability indicators of the linear viscoelasticity constitutive equation for isotropic materials with an arbitrary shear and bulk creep compliances are considered. General properties of the creep curves for volumetric, longitudinal and lateral strains generated by the linear equation under constant tensile load and constant hydrostatic pressure are studied analytically. It is proved that the linear theory is able to describe the effect of expansion of a material linear behavior range with hydrostatic pressure growth. The analysis revealed a number of specific features of the theoretic creep and compliance curves that can be employed as the applicability or non-applicability indicators of the linear viscoelasticity theory and are convenient to check using data of a material creep tests under various levels of pressure and tensile stress.
@article{VMUMM_2021_1_a6,
     author = {A. V. Khokhlov},
     title = {On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--46},
     year = {2021},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a6/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 39
EP  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a6/
LA  - ru
ID  - VMUMM_2021_1_a6
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 39-46
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a6/
%G ru
%F VMUMM_2021_1_a6
A. V. Khokhlov. On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 39-46. http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a6/

[1] Goldman A.Ya., Tsygankov S.A., “Ob uchete vida napryazhennogo sostoyaniya pri opisanii nelineinykh vyazkouprugikh svoistv chastichno kristallicheskikh polimerov (politetraftoretilena)”, Probl. prochnosti, 1978, no. 8, 60–64

[2] Goldman A.Ya., Tsygankov S.A., “Prognozirovanie deformatsii polzuchesti polimernykh materialov pri slozhnom napryazhennom sostoyanii”, Mekhan. kompozitnykh materialov, 1980, no. 6, 1088–1093

[3] Goldman A.Ya., Ob'emnaya deformatsiya plastmass, Mashinostroenie, L., 1984

[4] Goldman A.Ya., Prognozirovanie deformatsionno-prochnostnykh svoistv polimernykh i kompozitsionnykh materialov, Khimiya, L., 1988

[5] Ainbinder S.B., Tyunina E.L., Tsirule K.I., Svoistva polimerov v razlichnykh napryazhennykh sostoyaniyakh, Khimiya, M., 1981

[6] Ilyushin A.A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970

[7] Kristensen R., Vvedenie v teoriyu vyazkouprugosti, Mir, M., 1974

[8] Rabotnov Yu.N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977

[9] Tschoegl N.W., The Phenomenological Theory of Linear Viscoelastic Behavior, Springer, Heidelberg, 1989

[10] Georgievskii D.V., Klimov D.M., Pobedrya B.E., “Osobennosti povedeniya vyazkouprugikh modelei”, Izv. RAN. Mekhan. tverdogo tela, 2004, no. 1, 119–157

[11] Lakes R.S., Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009

[12] Bergström J.S., Mechanics of Solid Polymers: Theory and Computational Modeling, William Andrew, Amsterdam, 2015

[13] Khokhlov A.V., “Analiz obschikh svoistv krivykh polzuchesti pri tsiklicheskikh stupenchatykh nagruzheniyakh, porozhdaemykh lineinoi teoriei nasledstvennosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 21:2 (2017), 326–361 | DOI

[14] Khokhlov A.V., “Analiz svoistv krivykh polzuchesti s proizvolnoi nachalnoi stadiei nagruzheniya, porozhdaemykh lineinoi teoriei nasledstvennosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 22:1 (2018), 65–95 | DOI

[15] Khokhlov A.V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI

[16] Khokhlov A.V., “Analiz vliyaniya ob'emnoi polzuchesti na krivye nagruzheniya s postoyannoi skorostyu i evolyutsiyu koeffitsienta Puassona v ramkakh lineinoi teorii vyazkouprugosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 23:4 (2019), 671–704 | DOI

[17] Khokhlov A.V., “Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-linear hereditary theory”, Mech. Compos. Mater., 54:4 (2018), 473–486 | DOI

[18] Khokhlov A.V., “Properties of the set of strain diagrams produced by Rabotnov nonlinear equation for rheonomous materials”, Mech. Solids, 54:3 (2019), 384–399 | DOI

[19] Khokhlov A.V., “Modelirovanie zavisimosti krivykh polzuchesti pri rastyazhenii i koeffitsienta Puassona reonomnykh materialov ot gidrostaticheskogo davleniya s pomoschyu nelineino-nasledstvennogo sootnosheniya Rabotnova”, Mekhan. kompozitsionnykh materialov i konstruktsii, 24:3 (2018), 407–436 | DOI

[20] Khokhlov A.V., “Deformation and long-term strength of a thick-walled tube of physically non-linear viscoelastic material under constant pressure”, Russian Metallurgy (Metally), 2020, no. 10, 1079–1087 | DOI

[21] Lomakin V.A., Koltunov M.A., “Modelirovanie protsessa deformatsii nelineinykh vyazkouprugikh sred”, Mekhan. polimerov, 1967, no. 2, 221–227

[22] Rabotnov Yu.N., “Ravnovesie uprugoi sredy s posledeistviem”, Prikl. matem. i mekhan., 12:1 (1948), 53–62

[23] Rabotnov Yu.N., Polzuchest elementov konstruktsii, Nauka, M., 1966

[24] Delin M., Rychwalski R.W., Kubat J., Kubat M.J., Bertilsson H., Klason C., “Volume changes during flow of solid polymers”, J. Non-Crystalline Solids., 172–174 (1994), 779–785

[25] Addiego F., Dahoun A., G'Sell C., Hiver J.M., “Volume variation process of high-density polyethylene during tensile and creep tests”, Oil and Gas Sci. and Technol., 61:6 (2006), 715–724 | DOI

[26] Olkhovik O.E., Goldman A.Ya., “Polzuchest ftoroplasta pri sovmestnom deistvii rastyazheniya i gidrostaticheskogo davleniya”, Mekhan. polimerov, 1977, no. 3, 434–438

[27] Khokhlov A.V., “Sonstitutive relation for rheological processes with known loading history: creep and long-term strength curves”, Mech. Solids, 43:2 (2008), 283–299 | DOI

[28] Khokhlov A.V., “Fracture criteria under creep with strain history taken into account, and long-term strength modeling”, Mech. Solids, 44:4 (2009), 596–607 | DOI