@article{VMUMM_2021_1_a6,
author = {A. V. Khokhlov},
title = {On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {39--46},
year = {2021},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a6/}
}
TY - JOUR AU - A. V. Khokhlov TI - On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2021 SP - 39 EP - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a6/ LA - ru ID - VMUMM_2021_1_a6 ER -
%0 Journal Article %A A. V. Khokhlov %T On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2021 %P 39-46 %N 1 %U http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a6/ %G ru %F VMUMM_2021_1_a6
A. V. Khokhlov. On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 39-46. http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a6/
[1] Goldman A.Ya., Tsygankov S.A., “Ob uchete vida napryazhennogo sostoyaniya pri opisanii nelineinykh vyazkouprugikh svoistv chastichno kristallicheskikh polimerov (politetraftoretilena)”, Probl. prochnosti, 1978, no. 8, 60–64
[2] Goldman A.Ya., Tsygankov S.A., “Prognozirovanie deformatsii polzuchesti polimernykh materialov pri slozhnom napryazhennom sostoyanii”, Mekhan. kompozitnykh materialov, 1980, no. 6, 1088–1093
[3] Goldman A.Ya., Ob'emnaya deformatsiya plastmass, Mashinostroenie, L., 1984
[4] Goldman A.Ya., Prognozirovanie deformatsionno-prochnostnykh svoistv polimernykh i kompozitsionnykh materialov, Khimiya, L., 1988
[5] Ainbinder S.B., Tyunina E.L., Tsirule K.I., Svoistva polimerov v razlichnykh napryazhennykh sostoyaniyakh, Khimiya, M., 1981
[6] Ilyushin A.A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970
[7] Kristensen R., Vvedenie v teoriyu vyazkouprugosti, Mir, M., 1974
[8] Rabotnov Yu.N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977
[9] Tschoegl N.W., The Phenomenological Theory of Linear Viscoelastic Behavior, Springer, Heidelberg, 1989
[10] Georgievskii D.V., Klimov D.M., Pobedrya B.E., “Osobennosti povedeniya vyazkouprugikh modelei”, Izv. RAN. Mekhan. tverdogo tela, 2004, no. 1, 119–157
[11] Lakes R.S., Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009
[12] Bergström J.S., Mechanics of Solid Polymers: Theory and Computational Modeling, William Andrew, Amsterdam, 2015
[13] Khokhlov A.V., “Analiz obschikh svoistv krivykh polzuchesti pri tsiklicheskikh stupenchatykh nagruzheniyakh, porozhdaemykh lineinoi teoriei nasledstvennosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 21:2 (2017), 326–361 | DOI
[14] Khokhlov A.V., “Analiz svoistv krivykh polzuchesti s proizvolnoi nachalnoi stadiei nagruzheniya, porozhdaemykh lineinoi teoriei nasledstvennosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 22:1 (2018), 65–95 | DOI
[15] Khokhlov A.V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI
[16] Khokhlov A.V., “Analiz vliyaniya ob'emnoi polzuchesti na krivye nagruzheniya s postoyannoi skorostyu i evolyutsiyu koeffitsienta Puassona v ramkakh lineinoi teorii vyazkouprugosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 23:4 (2019), 671–704 | DOI
[17] Khokhlov A.V., “Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-linear hereditary theory”, Mech. Compos. Mater., 54:4 (2018), 473–486 | DOI
[18] Khokhlov A.V., “Properties of the set of strain diagrams produced by Rabotnov nonlinear equation for rheonomous materials”, Mech. Solids, 54:3 (2019), 384–399 | DOI
[19] Khokhlov A.V., “Modelirovanie zavisimosti krivykh polzuchesti pri rastyazhenii i koeffitsienta Puassona reonomnykh materialov ot gidrostaticheskogo davleniya s pomoschyu nelineino-nasledstvennogo sootnosheniya Rabotnova”, Mekhan. kompozitsionnykh materialov i konstruktsii, 24:3 (2018), 407–436 | DOI
[20] Khokhlov A.V., “Deformation and long-term strength of a thick-walled tube of physically non-linear viscoelastic material under constant pressure”, Russian Metallurgy (Metally), 2020, no. 10, 1079–1087 | DOI
[21] Lomakin V.A., Koltunov M.A., “Modelirovanie protsessa deformatsii nelineinykh vyazkouprugikh sred”, Mekhan. polimerov, 1967, no. 2, 221–227
[22] Rabotnov Yu.N., “Ravnovesie uprugoi sredy s posledeistviem”, Prikl. matem. i mekhan., 12:1 (1948), 53–62
[23] Rabotnov Yu.N., Polzuchest elementov konstruktsii, Nauka, M., 1966
[24] Delin M., Rychwalski R.W., Kubat J., Kubat M.J., Bertilsson H., Klason C., “Volume changes during flow of solid polymers”, J. Non-Crystalline Solids., 172–174 (1994), 779–785
[25] Addiego F., Dahoun A., G'Sell C., Hiver J.M., “Volume variation process of high-density polyethylene during tensile and creep tests”, Oil and Gas Sci. and Technol., 61:6 (2006), 715–724 | DOI
[26] Olkhovik O.E., Goldman A.Ya., “Polzuchest ftoroplasta pri sovmestnom deistvii rastyazheniya i gidrostaticheskogo davleniya”, Mekhan. polimerov, 1977, no. 3, 434–438
[27] Khokhlov A.V., “Sonstitutive relation for rheological processes with known loading history: creep and long-term strength curves”, Mech. Solids, 43:2 (2008), 283–299 | DOI
[28] Khokhlov A.V., “Fracture criteria under creep with strain history taken into account, and long-term strength modeling”, Mech. Solids, 44:4 (2009), 596–607 | DOI