Diffraction and vibration attenuation by obstacles in elastic media
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 35-39
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the example of $SH$-wave diffraction by an obstacle like a half-plane, it is shown the possibility of using barriers to attenuate the elastic vibrations. It is found that not only a solid barrier but also a cut or a natural fracture in soil may protect foundations and buildings from shear volume waves.
@article{VMUMM_2021_1_a5,
     author = {M. Sh. Israilov},
     title = {Diffraction and vibration attenuation by obstacles in elastic media},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--39},
     year = {2021},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a5/}
}
TY  - JOUR
AU  - M. Sh. Israilov
TI  - Diffraction and vibration attenuation by obstacles in elastic media
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 35
EP  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a5/
LA  - ru
ID  - VMUMM_2021_1_a5
ER  - 
%0 Journal Article
%A M. Sh. Israilov
%T Diffraction and vibration attenuation by obstacles in elastic media
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 35-39
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a5/
%G ru
%F VMUMM_2021_1_a5
M. Sh. Israilov. Diffraction and vibration attenuation by obstacles in elastic media. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a5/

[1] Haupt W.A., “Wave propagation in the ground and isolation measures”, Proc. Third Int. Conf. on Recent Advances in Geotechn. Earthquake Engng. and Soil Mech. (St. Luois, USA, 1995), 985–1016

[2] Richart F.E., Woods R.D., Hall J.R., Vibrations of Soils and Foundations, Prentice-Hall, Englewood Cliffs, 1970

[3] Abramova T.T., “Zaschita gruntovykh massivov ot dinamicheskikh i seismicheskikh vozdeistvii”, Mezhdunar. nauch. zhurn. “Simvol nauki”, 2016, no. 4, 41–49

[4] Miller G.F., Pursey H., “On the partition of energy between elastic waves in a semi-infinite solid”, Proc. Roy. Soc. London. Ser. A, 233:1192 (1955), 55–69

[5] Israilov M.Sh., Dinamicheskaya teoriya uprugosti i difraktsiya voln, Izd-vo MGU, M., 1992

[6] Peters A.S., Stoker J.J., “A uniqueness theorem and a new solution for Sommerfeld's and other diffraction problems”, Communs Pure and Appl. Math., 7:3 (1954), 565–585

[7] Sommerfeld A., “Mathematische Theorie der Diffraction”, Math. Ann., 45 (1896), 263–277

[8] Born M., Volf E., Osnovy optiki, Nauka, M., 1973

[9] Wong R., Asymptotic Approximations of Integrals, Academic Press, N.Y., 1989

[10] Zhigalin A.D., Lokshin G.P., “Formirovanie vibratsionnogo polya v geologicheskoi srede”, Inzh. geol., 1991, no. 6, 110–119

[11] B.G. Korenev, I.M. Rabinovich (red.), Dinamicheskii raschet sooruzhenii na spetsialnye vozdeistviya. Spravochnik proektirovschika, Stroiizdat, M., 1981

[12] Bollinger G.A., Blast Vibration Analysis, Southern Illinois Univ. Press, Carbondale, 1971