Attainability set and robust stability of perturbed oscillatory systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 67-71
Voir la notice de l'article provenant de la source Math-Net.Ru
The second-order oscillatory system with constant coefficients in the presence of a time-varying external perturbation is considered. Extreme points of the limit cycle on the phase plane of the system that exists under the action of the worst perturbation are found. To obtain conditions for robust stability of the system in relation to a time-varying perturbation, the limit cycle is used.
@article{VMUMM_2021_1_a12,
author = {V. V. Aleksandrov and D. I. Bugrov and V. N. Zhermolenko and I. S. Konovalenko},
title = {Attainability set and robust stability of perturbed oscillatory systems},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {67--71},
publisher = {mathdoc},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a12/}
}
TY - JOUR AU - V. V. Aleksandrov AU - D. I. Bugrov AU - V. N. Zhermolenko AU - I. S. Konovalenko TI - Attainability set and robust stability of perturbed oscillatory systems JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2021 SP - 67 EP - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a12/ LA - ru ID - VMUMM_2021_1_a12 ER -
%0 Journal Article %A V. V. Aleksandrov %A D. I. Bugrov %A V. N. Zhermolenko %A I. S. Konovalenko %T Attainability set and robust stability of perturbed oscillatory systems %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2021 %P 67-71 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a12/ %G ru %F VMUMM_2021_1_a12
V. V. Aleksandrov; D. I. Bugrov; V. N. Zhermolenko; I. S. Konovalenko. Attainability set and robust stability of perturbed oscillatory systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a12/