Attainability set and robust stability of perturbed oscillatory systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 67-71
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The second-order oscillatory system with constant coefficients in the presence of a time-varying external perturbation is considered. Extreme points of the limit cycle on the phase plane of the system that exists under the action of the worst perturbation are found. To obtain conditions for robust stability of the system in relation to a time-varying perturbation, the limit cycle is used.
@article{VMUMM_2021_1_a12,
     author = {V. V. Aleksandrov and D. I. Bugrov and V. N. Zhermolenko and I. S. Konovalenko},
     title = {Attainability set and robust stability of perturbed oscillatory systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {67--71},
     year = {2021},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a12/}
}
TY  - JOUR
AU  - V. V. Aleksandrov
AU  - D. I. Bugrov
AU  - V. N. Zhermolenko
AU  - I. S. Konovalenko
TI  - Attainability set and robust stability of perturbed oscillatory systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 67
EP  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a12/
LA  - ru
ID  - VMUMM_2021_1_a12
ER  - 
%0 Journal Article
%A V. V. Aleksandrov
%A D. I. Bugrov
%A V. N. Zhermolenko
%A I. S. Konovalenko
%T Attainability set and robust stability of perturbed oscillatory systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 67-71
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a12/
%G ru
%F VMUMM_2021_1_a12
V. V. Aleksandrov; D. I. Bugrov; V. N. Zhermolenko; I. S. Konovalenko. Attainability set and robust stability of perturbed oscillatory systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a12/

[1] Zhermolenko V.N., “K zadache B.V. Bulgakova o maksimalnom otklonenii kolebatelnoi sistemy vtorogo poryadka”, Vestn. Mosk. un-ta. Matem. Mekhan., 1980, no. 2, 87–91

[2] Zhermolenko V.N., “Predelnye tsikly na fazovoi ploskosti”, Zadacha Bulgakova o maksimalnom otklonenii i ee primenenie, Izd-vo MGU, M., 1993, 35–48

[3] Zhermolenko V.N., “Maksimalnoe otklonenie kolebatelnoi sistemy vtorogo poryadka s vneshnim i parametricheskim vozmuscheniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 3, 1–6

[4] Aleksandrov V.V., Aleksandrova O.V., Prikhodko I.P., Temoltzi-Auila R., “Sintez avtokolebanii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2007, no. 3, 41–43

[5] Aleksandrov V.V., Aleksandrova O.V., Konovalenko I.S., Tikhonova K.V., “Vozmuschaemye stabilnye sistemy na ploskosti. I”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 5, 30–36

[6] Malkin I.G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966

[7] Elsgolts L.E., Differentsialnye uravneniya i variatsionnoe ischislenie, Ucheb.: Dlya fiz. i fiz.-mat. f-tov un-tov, 4-e izd., Editorial URSS, M., 2000