On duality for cohomology with compact supports
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 60-63
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The canonical mapping of cohomology with compact supports via linear functionals on homology, generally speaking, is not surjective. The image of the mapping is described by linear functionals with compact supports. In this paper we prove the formula $H_c ^ k (X; \mathbb {R}) = {\rm Hom}_c (H_k ^ c (X; \mathbb {R}), \mathbb {R})$, where $ X $ is a countable simplicial complex with an additional requirement, the star of each simplex has a finite number of simplices in all dimensions.
@article{VMUMM_2021_1_a10,
     author = {Wu Yang},
     title = {On duality for cohomology with compact supports},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {60--63},
     year = {2021},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a10/}
}
TY  - JOUR
AU  - Wu Yang
TI  - On duality for cohomology with compact supports
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 60
EP  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a10/
LA  - ru
ID  - VMUMM_2021_1_a10
ER  - 
%0 Journal Article
%A Wu Yang
%T On duality for cohomology with compact supports
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 60-63
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a10/
%G ru
%F VMUMM_2021_1_a10
Wu Yang. On duality for cohomology with compact supports. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 60-63. http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a10/

[1] Fomenko A.T., Fuks D.B., Kurs gomotopicheskoi topologii, LENAND, M., 2014