Correlation approach to studying dependent discrete probability spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 10-16
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-known problem of the absence of independent events in some discrete probability spaces (finite or countable) is considered. It is proposed to study such spaces using the minimum absolute value of the correlation coefficient of event indicators (in the case of a countable space, the infimum is taken). Examples of the probability space with a prime number of equally possible outcomes, a finite space with weights and irrationality, a geometric space with a prime number of outcomes and a countable space with probabilities given by the sum of three geometric progressions are considered.
@article{VMUMM_2021_1_a1,
     author = {A. V. Lebedev},
     title = {Correlation approach to studying dependent discrete probability spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {10--16},
     year = {2021},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a1/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Correlation approach to studying dependent discrete probability spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 10
EP  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a1/
LA  - ru
ID  - VMUMM_2021_1_a1
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Correlation approach to studying dependent discrete probability spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 10-16
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a1/
%G ru
%F VMUMM_2021_1_a1
A. V. Lebedev. Correlation approach to studying dependent discrete probability spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 10-16. http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a1/

[1] Vinogradov O.P., “Prostye chisla i nezavisimost”, Sovrem. probl. matem. i mekhan., 7:1 (2011), 16–21

[2] Vinogradov O.P., “O nezavisimykh sobytiyakh v semeistvakh diskretnykh raspredelenii”, Diskretn. matem., 25:4 (2013), 116–124

[3] Shiflett R.C., Shultz H.S., “An approach to independent sets”, Math. Spectrum., 12:1 (1979/80), 11–16

[4] Eisenberg B., Ghosh B.K., “Independent events in a discrete uniform probability space”, Amer. Statist., 41:1 (1987), 52–56

[5] Baryshnikov Y.M., Eisenberg B., “Independent events and independent experiments”, Proc. Amer. Math. Soc., 118:2 (1993), 615–617

[6] Baryshnikov Y.M., Eisenberg B., “Addendum to “Independence and determination of probabilities””, Proc. Amer. Math. Soc., 129:9 (2001), 2817

[7] Chen Z., Rubin H., Vitale R.A., “Independence and determination of probabilities”, Proc. Amer. Math. Soc., 125:12 (1997), 3721–3723

[8] Skekely G.J., Mori T.F., “Independence and atoms”, Proc. Amer. Math. Soc., 130:1 (2002), 213–216

[9] Stoyanov J., “Sets of binary random variables with prescribed independence/dependence structure”, Math. Scientist., 28:1 (2003), 19–27

[10] Edwards W., Shiflett R., Shultz H., “Dependent probability spaces”, Coll. Math. J., 39:3 (2008), 221–226

[11] Ionascu E.J., Stancu A.A., “On independent sets in purely atomic probability spaces with geometric distribution”, Acta Math. Univer. Comenianae, 79:1 (2010), 31–38

[12] Sonin I.M., Independent events in a simple random experiment and the meaninig of independence, arXiv: 1204.6731

[13] Stoyanov I., Kontrprimery v teorii veroyatnostei, MTsNMO, M., 2014

[14] Grahl J., Nevo S., Estimates for probabilities of independent events and infinite series, arXiv: 1609.08924

[15] Kovacevic M., Senk V., “On possible dependence structures of a set of random variables”, Acta Math. Hung., 135:3 (2012), 286–296

[16] Shparlinski I. E., “Modular hyperbolas”, Jap. J. Math., 7:2 (2012), 235–294