@article{VMUMM_2021_1_a0,
author = {O. S. Rozanova and O. V. Uspenskaya},
title = {On properties of solutions of the {Cauchy} problem for two-dimensional transport equations on a rotating plane},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--10},
year = {2021},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a0/}
}
TY - JOUR AU - O. S. Rozanova AU - O. V. Uspenskaya TI - On properties of solutions of the Cauchy problem for two-dimensional transport equations on a rotating plane JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2021 SP - 3 EP - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a0/ LA - ru ID - VMUMM_2021_1_a0 ER -
%0 Journal Article %A O. S. Rozanova %A O. V. Uspenskaya %T On properties of solutions of the Cauchy problem for two-dimensional transport equations on a rotating plane %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2021 %P 3-10 %N 1 %U http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a0/ %G ru %F VMUMM_2021_1_a0
O. S. Rozanova; O. V. Uspenskaya. On properties of solutions of the Cauchy problem for two-dimensional transport equations on a rotating plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2021_1_a0/
[1] Vallis G.K., Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation, Cambridge University Press, Cambridge, 2006
[2] Obukhov A.M., “On the geostrophical wind”, Izv. Acad. Nauk (Izvestiya of Academie of Science of URSS). Ser. Geography and Geophysics, XIII (1949), 281–306
[3] Dafermos S.M., Hyperbolic conservation laws in continuum physics, 4th ed., Springer, Berlin–Heidelberg, 2016
[4] Rozanova O.S., “Obrazovanie osobennostei reshenii s kompaktnym nositelem uravnenii Eilera na vraschayuscheisya ploskosti”, Differents. uravneniya, 34:8 (1998), 1114–1118
[5] Rozanova O.S., “Classes of smooth solutions to multidimensional balance laws of gas dynamic type on Riemannian manifolds”, Trends in mathematical physics research, Nova Sci. Publ., Hauppauge, NY, 2004, 155–204
[6] Cheng B., Tadmor E., “Long time existence of smooth solutions for the rapidly rotating shallow-water and Euler equations”, SIAM J. Math. Anal., 39 (2008), 1668–1685
[7] Rozanova O.S., “Singularity formation for rotational gas dynamics”, J. Math. Anal. and Appl., 492 (2020), 124405
[8] Shandarin S.F., Zeldovich Y.B., “Large-scale structure of the universe: turbulence, intermittency, structures in a selfgravitating medium”, Rev. Modern Phys., 61 (1989), 185–220
[9] Chen G.-Q., Liu H., “Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids”, Physica D: Nonlinear Phenomena, 189 (2004), 141–165
[10] Liu H., Tadmor E., “Rotation prevents finite-time breakdown”, Physica D: Nonlinear Phenomena, 188 (2004), 262–276
[11] Korshunova A., Rozanova O., “On effects of stochastic regularization for the pressureless gas dynamics”, Contemp. Appl. Math., 17 (2012), 486–493
[12] Albeverio S., Korshunova A., Rozanova O., “A probabilistic model associated with the pressureless gas dynamics”, Bull. Sci. Math., 137 (2013), 902–922
[13] Egorov A.I., Uravneniya Rikkati, 2-e izd., SOLON-Press, M., 2017
[14] Freidlin M., Markov processes and differential equations: asymptotic problems, Lect. Math. ETH Zürich, Birkhaüser, Basel, 1996
[15] Rozanova O.S., Yu J.-L., Hu C.-K., “On the position of vortex in two-dimensional model of atmosphere”, Nonlinear Analysis: Real World Applications, 13 (2012), 1941–1954
[16] Rozanova O.S., “O svyazi uravneniya Gamiltona–Yakobi c nekotorymi sistemami kvazilineinykh uravnenii”, Tr. In-ta matematiki UrO RAN, 21, no. 2, 2015, 206–219