On the motion of a system with a moving internal element in the presence of external viscous friction
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2020), pp. 50-56

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system consisting of a translationally moving platform along a fixed line with viscous friction and a body committing a given translational motion relatively to the platform due to internal forces along the same line. In relative motion the value of the body velocity is limited. It is proved that, in the case of linear viscous friction, the unlimited displacement of the platform in any direction is impossible. In the general case under certain conditions imposed on the force of viscous friction, the velocity of the platform is limited. At the same time, if the displacement of the platform in any direction, for example to the right, is unlimited, then with the growth of time the value of the platform velocity changes its sign infinite number of times, and the total time of platform motion to the left and the path passed at the same time tend to infinity.
@article{VMUMM_2020_5_a6,
     author = {E. I. Kugushev and T. V. Popova and S. V. Sazonov},
     title = {On the motion of a system with a moving internal element in the presence of external viscous friction},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--56},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a6/}
}
TY  - JOUR
AU  - E. I. Kugushev
AU  - T. V. Popova
AU  - S. V. Sazonov
TI  - On the motion of a system with a moving internal element in the presence of external viscous friction
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 50
EP  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a6/
LA  - ru
ID  - VMUMM_2020_5_a6
ER  - 
%0 Journal Article
%A E. I. Kugushev
%A T. V. Popova
%A S. V. Sazonov
%T On the motion of a system with a moving internal element in the presence of external viscous friction
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 50-56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a6/
%G ru
%F VMUMM_2020_5_a6
E. I. Kugushev; T. V. Popova; S. V. Sazonov. On the motion of a system with a moving internal element in the presence of external viscous friction. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2020), pp. 50-56. http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a6/