Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2020), pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a linearly ordered noncommutative ring with $1/2$ and $G_n(R)$ be the subsemigroup of the group $\mathrm{GL}_n(R)$ consisting of all matrices with nonnegative elements. Endomorphisms of this group are described in the papaer for $n \geqslant 3$.
@article{VMUMM_2020_5_a0,
     author = {V. V. Nemiro},
     title = {Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a0/}
}
TY  - JOUR
AU  - V. V. Nemiro
TI  - Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 3
EP  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a0/
LA  - ru
ID  - VMUMM_2020_5_a0
ER  - 
%0 Journal Article
%A V. V. Nemiro
%T Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 3-8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a0/
%G ru
%F VMUMM_2020_5_a0
V. V. Nemiro. Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2020), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a0/