Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2020), pp. 3-8
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $R$ be a linearly ordered noncommutative ring with $1/2$ and $G_n(R)$ be the subsemigroup of the group $\mathrm{GL}_n(R)$ consisting of all matrices with nonnegative elements. Endomorphisms of this group are described in the papaer for $n \geqslant 3$.
			
            
            
            
          
        
      @article{VMUMM_2020_5_a0,
     author = {V. V. Nemiro},
     title = {Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a0/}
}
                      
                      
                    TY - JOUR AU - V. V. Nemiro TI - Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 3 EP - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a0/ LA - ru ID - VMUMM_2020_5_a0 ER -
V. V. Nemiro. Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2020), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2020_5_a0/
