Ruin probability in models with stochastic premiums
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 57-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The probability of ruin of an insurance company is studied under two different risk models with stochastic premiums. Upper bounds for the probability of ruin are obtained provided that either the aggregate claims process or the aggregate premium process is constructed using the renewal process.
@article{VMUMM_2020_4_a8,
     author = {A. A. Muromskaya},
     title = {Ruin probability in models with stochastic premiums},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--61},
     year = {2020},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a8/}
}
TY  - JOUR
AU  - A. A. Muromskaya
TI  - Ruin probability in models with stochastic premiums
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 57
EP  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a8/
LA  - ru
ID  - VMUMM_2020_4_a8
ER  - 
%0 Journal Article
%A A. A. Muromskaya
%T Ruin probability in models with stochastic premiums
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 57-61
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a8/
%G ru
%F VMUMM_2020_4_a8
A. A. Muromskaya. Ruin probability in models with stochastic premiums. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 57-61. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a8/

[1] Lundberg F., Approximations of the probability function. Reinsurance of collective risks, Doctoral thesis, Uppsala, 1903

[2] Cramer H., On the mathematical theory of risk, Skandia Jubilee Volume, Stockholm, 1930 | MR | Zbl

[3] Cramer H., Collective risk theory, Skandia Jubilee Volume, Stockholm, 1955 | MR

[4] Kalashnikov V. V., Konstantinidis D. G., “Veroyatnost razoreniya”, Fund. i prikl. matem., 2:4 (1996), 1055–1100 | MR | Zbl

[5] Azcue P., Muler N., “Optimal reinsurance and dividend distribution policies in the Cramer–Lundberg model”, Math. Finance, 15:2 (2005), 261–308 | DOI | MR | Zbl

[6] Gerber H. U., Shiu E. S.W., Smith N., “Methods for estimating the optimal dividend barrier and the probability of ruin”, Insurance: Math. Econom., 42:1 (2008), 243–254 | DOI | MR | Zbl

[7] Boikov A. V., “Model Kramera–Lundberga so stokhasticheskimi premiyami”, Teor. veroyatn. i ee primen., 47:3 (2002), 549–553 | Zbl

[8] Zinchenko N., Andrusiv A., “Risk process with stochastic premiums”, Theory Stochast. Process., 14:3–4 (2008), 189–208 | MR | Zbl

[9] Labbé C., Sendova K. P., “The expected discounted penalty function under a risk model with stochastic income”, Appl. Math. and Comput., 215:5 (2009), 1852–1867 | MR | Zbl

[10] Dong H., Liu Z. M., Zhao X. H., “Risk process with barrier and random income”, Appl. Math. E-Notes, 10 (2010), 191–198 | MR | Zbl

[11] Ragulina O., “The risk model with stochastic premiums, dependence and a threshold dividend strategy”, Mod. Stochast.: Theory Appl., 4:4 (2017), 315–351 | DOI | MR | Zbl

[12] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: analysis and numerical solution”, Comput. Math. and Math. Phys., 52:10 (2012), 1384–1416 | DOI | MR | Zbl

[13] Schmidli H., Lecture notes on risk theory, Institute of Mathematics, University of Cologne, Cologne, 2000 | MR