Spectrum of one-dimensional natural vibrations of layered medium consisting of elastic material and viscous incompressible fluid
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 53-57
Voir la notice de l'article provenant de la source Math-Net.Ru
The spectrum of one-dimensional natural vibrations of a layered medium with a periodic structure consisting of an isotropic elastic material and a viscous incompressible fluid is studied. It is established that the spectrum points are the roots of transcendental equations. In order to solve these equations numerically for multi-layered media, the roots of quadratic equations are proposed to use as initial approximations.
@article{VMUMM_2020_4_a7,
author = {A. S. Shamaev and V. V. Shumilova},
title = {Spectrum of one-dimensional natural vibrations of layered medium consisting of elastic material and viscous incompressible fluid},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {53--57},
publisher = {mathdoc},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a7/}
}
TY - JOUR AU - A. S. Shamaev AU - V. V. Shumilova TI - Spectrum of one-dimensional natural vibrations of layered medium consisting of elastic material and viscous incompressible fluid JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 53 EP - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a7/ LA - ru ID - VMUMM_2020_4_a7 ER -
%0 Journal Article %A A. S. Shamaev %A V. V. Shumilova %T Spectrum of one-dimensional natural vibrations of layered medium consisting of elastic material and viscous incompressible fluid %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2020 %P 53-57 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a7/ %G ru %F VMUMM_2020_4_a7
A. S. Shamaev; V. V. Shumilova. Spectrum of one-dimensional natural vibrations of layered medium consisting of elastic material and viscous incompressible fluid. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 53-57. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a7/