Dynamic deformation of a thin plastic layer between converging rigid cylinders
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 29-37

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of asymptotic analysis with a natural small geometric parameter $\alpha$ without any static or kinematic hypotheses, the dynamic solutions of the Prandtl analog for the case of a cylindrical layer, including the terms with $\alpha^{-1}$ and $\alpha^{0}$ for various cylinder configurations, are obtained and analyzed.
@article{VMUMM_2020_4_a3,
     author = {R. R. Shabaykin},
     title = {Dynamic deformation of a thin plastic layer between converging rigid cylinders},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--37},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/}
}
TY  - JOUR
AU  - R. R. Shabaykin
TI  - Dynamic deformation of a thin plastic layer between converging rigid cylinders
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 29
EP  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/
LA  - ru
ID  - VMUMM_2020_4_a3
ER  - 
%0 Journal Article
%A R. R. Shabaykin
%T Dynamic deformation of a thin plastic layer between converging rigid cylinders
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 29-37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/
%G ru
%F VMUMM_2020_4_a3
R. R. Shabaykin. Dynamic deformation of a thin plastic layer between converging rigid cylinders. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 29-37. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/