Dynamic deformation of a thin plastic layer between converging rigid cylinders
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 29-37
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			On the basis of asymptotic analysis with a natural small geometric parameter $\alpha$ without any static or kinematic hypotheses, the dynamic solutions of the Prandtl analog for the case of a cylindrical layer, including the terms with $\alpha^{-1}$ and $\alpha^{0}$ for various cylinder configurations, are obtained and analyzed.
			
            
            
            
          
        
      @article{VMUMM_2020_4_a3,
     author = {R. R. Shabaykin},
     title = {Dynamic deformation of a thin plastic layer between converging rigid cylinders},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--37},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/}
}
                      
                      
                    TY - JOUR AU - R. R. Shabaykin TI - Dynamic deformation of a thin plastic layer between converging rigid cylinders JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 29 EP - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/ LA - ru ID - VMUMM_2020_4_a3 ER -
R. R. Shabaykin. Dynamic deformation of a thin plastic layer between converging rigid cylinders. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 29-37. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/
