Dynamic deformation of a thin plastic layer between converging rigid cylinders
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 29-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of asymptotic analysis with a natural small geometric parameter $\alpha$ without any static or kinematic hypotheses, the dynamic solutions of the Prandtl analog for the case of a cylindrical layer, including the terms with $\alpha^{-1}$ and $\alpha^{0}$ for various cylinder configurations, are obtained and analyzed.
@article{VMUMM_2020_4_a3,
     author = {R. R. Shabaykin},
     title = {Dynamic deformation of a thin plastic layer between converging rigid cylinders},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--37},
     year = {2020},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/}
}
TY  - JOUR
AU  - R. R. Shabaykin
TI  - Dynamic deformation of a thin plastic layer between converging rigid cylinders
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 29
EP  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/
LA  - ru
ID  - VMUMM_2020_4_a3
ER  - 
%0 Journal Article
%A R. R. Shabaykin
%T Dynamic deformation of a thin plastic layer between converging rigid cylinders
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 29-37
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/
%G ru
%F VMUMM_2020_4_a3
R. R. Shabaykin. Dynamic deformation of a thin plastic layer between converging rigid cylinders. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 29-37. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a3/

[1] Prandtl L., “Primery primeneniya teoremy Genki k ravnovesiyu plasticheskikh tel”, Teoriya plastichnosti, IL, M., 1948, 102–113

[2] Khill R., Matematicheskaya teoriya plastichnosti, Gostekhteoretizdat, M., 1956

[3] Kiiko I. A., “Obobschenie zadachi L. Prandtlya ob osadke polosy na sluchai szhimaemogo materiala”, Vestn. Mosk. un-ta. Matem. Mekhan., 2002, no. 4, 47–52

[4] Kuznetsov A. I., “Zadacha o neodnorodnom plasticheskom sloe”, Arch. Mech. Stos., 12:2 (1960), 163–172 | MR | Zbl

[5] Nepershin R. I., “Plasticheskoe techenie pri szhatii diska mezhdu parallelnymi plitami”, Mashinovedenie, 1968, no. 1, 97–100

[6] Georgievskii D. V., Shabaikin R. R., “Kvazistaticheskoe i dinamicheskoe sdavlivanie ploskogo kruglogo idealno-plasticheskogo sloya zhestkimi plitami”, Matematicheskoe modelirovanie i eksperimentalnaya mekhanika deformiruemogo tverdogo tela, TvTGU, Tver, 2017, 56–83

[7] Nepershin R. I., “Vliyanie teploperedachi na neizotermicheskoe ploskoe plasticheskoe techenie pri szhatii tonkoi zagotovki mezhdu ploskimi shtampami”, Probl. mashinostroeniya i nadezhnosti mashin, 1997, no. 1, 96–103

[8] Bykovtsev G. I., “O szhatii plasticheskogo sloya zhestkimi sherokhovatymi plitami s uchetom sil inertsii”, Izv. AN SSSR. Mekhanika i mashinostroenie, 1960, no. 6, 140–142 | Zbl

[9] Kiiko I. A., Kadymov V. A., “Obobscheniya zadachi L. Prandtlya o szhatii polosy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2003, no. 4, 50–56 | MR | Zbl

[10] Nayar E., “Nekotorye ploskie inertsionnye techeniya plasticheskikh materialov”, Mekhanika sploshnykh sred, Izd-vo Bolgarskoi AN, Sofiya, 1968, 269–277

[11] Georgievskii D. V., “Asimptoticheskoe integrirovanie zadachi Prandtlya v dinamicheskoi postanovke”, Izv. RAN. Mekhan. tverdogo tela, 2013, no. 1, 97–105

[12] Georgievskii D. V., “Asimptoticheskii analiz plasticheskogo techeniya vdol obrazuyuschei v tonkom tsilindricheskom sloe”, Prikl. mekhan. i tekhn. fiz., 51:5 (2010), 111–119 | MR | Zbl