Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 22-28
Voir la notice de l'article provenant de la source Math-Net.Ru
A local case of A. Fomenko conjecture on possibility of realization of a Liouville foliation with arbitrary topological Fomenko–Zieschang invariant (which is a graph with numerical marks) is discussed. In the class of billiard books, a foliation with arbitrary value of one integer mark (that corresponds to Euler class of one Seifert submanifold) was realized.
@article{VMUMM_2020_4_a2,
author = {V. V. Vedyushkina and V. A. Kibkalo},
title = {Realization of numeri{\cyrs}al invariant of the {Siefert} bundle of integrable systems by billiards},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {22--28},
publisher = {mathdoc},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a2/}
}
TY - JOUR AU - V. V. Vedyushkina AU - V. A. Kibkalo TI - Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 22 EP - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a2/ LA - ru ID - VMUMM_2020_4_a2 ER -
%0 Journal Article %A V. V. Vedyushkina %A V. A. Kibkalo %T Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2020 %P 22-28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a2/ %G ru %F VMUMM_2020_4_a2
V. V. Vedyushkina; V. A. Kibkalo. Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 22-28. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a2/