Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 22-28

Voir la notice de l'article provenant de la source Math-Net.Ru

A local case of A. Fomenko conjecture on possibility of realization of a Liouville foliation with arbitrary topological Fomenko–Zieschang invariant (which is a graph with numerical marks) is discussed. In the class of billiard books, a foliation with arbitrary value of one integer mark (that corresponds to Euler class of one Seifert submanifold) was realized.
@article{VMUMM_2020_4_a2,
     author = {V. V. Vedyushkina and V. A. Kibkalo},
     title = {Realization of numeri{\cyrs}al invariant of the {Siefert} bundle of integrable systems by billiards},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--28},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a2/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
AU  - V. A. Kibkalo
TI  - Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 22
EP  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a2/
LA  - ru
ID  - VMUMM_2020_4_a2
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%A V. A. Kibkalo
%T Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 22-28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a2/
%G ru
%F VMUMM_2020_4_a2
V. V. Vedyushkina; V. A. Kibkalo. Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 22-28. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a2/