Double Magnus type wind turbine
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 65-69
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A closed mathematical model of a double Magnus type wind turbine with a horizontal axis is constructed. The propellers of the turbine are supposed to rotate in opposite directions. For such a system, equations of motion are derived. In the case of dimensions of the front propeller being two times smaller than dimensions of the rear propeller, operating modes and a trapped power coefficient are found numerically.
@article{VMUMM_2020_4_a10,
     author = {L. A. Klimina and E. S. Shalimova and M. Z. Dosaev and Yu. D. Seliutski},
     title = {Double {Magnus} type wind turbine},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--69},
     year = {2020},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a10/}
}
TY  - JOUR
AU  - L. A. Klimina
AU  - E. S. Shalimova
AU  - M. Z. Dosaev
AU  - Yu. D. Seliutski
TI  - Double Magnus type wind turbine
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 65
EP  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a10/
LA  - ru
ID  - VMUMM_2020_4_a10
ER  - 
%0 Journal Article
%A L. A. Klimina
%A E. S. Shalimova
%A M. Z. Dosaev
%A Yu. D. Seliutski
%T Double Magnus type wind turbine
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 65-69
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a10/
%G ru
%F VMUMM_2020_4_a10
L. A. Klimina; E. S. Shalimova; M. Z. Dosaev; Yu. D. Seliutski. Double Magnus type wind turbine. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 65-69. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a10/

[1] Savonius S. J., Rotor adapted to be driven by wind or flowing water, U.S. Patent N 1697574 A, 1929

[2] Akira I., Kawashima S., Nishizawa Y., Ushiyama I., Komatinovic N., “A study on Savonius type Magnus wind turbine”, European Wind Energy Conference and Exhibition, EWEC 2007 (Milan, Italy, 2007), v. 3, 1953–1960

[3] Richmond-Navarro G., Calderon-Munoz W. R., LeBoeuf R., Castillo P., “A Magnus wind turbine power model based on direct solutions using the Blade Element Momentum Theory and symbolic regression”, IEEE Trans. Sustain. Energy, 8:1 (2017), 425–430 | DOI

[4] Lopez N., Mara B., Mercado B., Mercado L., Pascual M., Promentilla M. A., “Design of modified Magnus wind rotors using computational fluid dynamics simulation and multi-response optimization”, J. Renew. Sustain. Energy, 7:6 (2015), 063135 | DOI

[5] Lee S., Kim H., Son E., “Effects of design parameters on aerodynamic performance of a counter-rotating wind turbine”, Renew. Energy, 42 (2012), 140–144 | DOI

[6] Ishkhanyan M. V., Klimina L. A., Privalova O. G., “Matematicheskoe modelirovanie vetroturbiny, rabotayuschei na osnove effekta Magnusa”, Mekhatronika, avtomatizatsiya, upravlenie, 19:8 (2018), 523–528

[7] Dosaev M. Z., Samsonov V. A., Seliutski Y. D., “On the dynamics of a small-scale wind power generator”, Doklady Physics, 52:9 (2007), 493–495 | DOI | Zbl

[8] Dosaev M. Z., Lin Ch.-H., Lu W.-L., Samsonov V. A., Selyutskii Yu. D., “A qualitative analysis of the steady modes of operation of small wind power generators”, J. Appl. Math. and Mech., 73:3 (2009), 259–263 | DOI | MR

[9] Samsonov V. A., Dosaev M. Z., Selyutskiy Y. D., “Methods of qualitative analysis in the problem of rigid body motion in medium”, Int. J. Bifurcat. Chaos, 21:10 (2011), 2955–2961 | DOI | MR | Zbl

[10] Bach G., “Untersuchungen über Savonius-Rotoren und verwandte Stromungsmaschinen”, Forsch. Gebiet Ingenieurwesens. A, 2:6 (1931), 218–231 | DOI