Isoenergy manifolds of integrable billiard books
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 12-22

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of integrable Hamiltonian systems with two degrees of freedom — billiard books, which are generalizations of billiards bounded by arcs of confocal quadrics. The first issue arising in the study of billiards is concerned with the topology of the phase space and the isoenergy manifold. We prove that the phase space and the isoenergy manifold of any billiard book are actually piecewise manifolds.
@article{VMUMM_2020_4_a1,
     author = {I. S. Kharcheva},
     title = {Isoenergy manifolds of integrable billiard books},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {12--22},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a1/}
}
TY  - JOUR
AU  - I. S. Kharcheva
TI  - Isoenergy manifolds of integrable billiard books
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 12
EP  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a1/
LA  - ru
ID  - VMUMM_2020_4_a1
ER  - 
%0 Journal Article
%A I. S. Kharcheva
%T Isoenergy manifolds of integrable billiard books
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 12-22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a1/
%G ru
%F VMUMM_2020_4_a1
I. S. Kharcheva. Isoenergy manifolds of integrable billiard books. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 12-22. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a1/