@article{VMUMM_2020_4_a0,
author = {S. I. Nikulin and O. S. Rozanova},
title = {On certain analytically solvable problems of mean field games theory},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--11},
year = {2020},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/}
}
TY - JOUR AU - S. I. Nikulin AU - O. S. Rozanova TI - On certain analytically solvable problems of mean field games theory JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 3 EP - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/ LA - ru ID - VMUMM_2020_4_a0 ER -
S. I. Nikulin; O. S. Rozanova. On certain analytically solvable problems of mean field games theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 3-11. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/
[1] Guéant O., Lasry J.-M., Lions P.-L., “Mean Field Games and applications”, Paris–Princeton lectures on mathematical finance, Springer, Paris, 2010, 205–266 | MR
[2] Lasry J. M., Lions P.-L., “Mean field games”, Jap. J. Math., 2:1 (2007), 229–260 | DOI | MR | Zbl
[3] Gomes D. A., Saede J., “Mean field games models — A brief survey”, Dynamic Games and Appl., 4:2 (2013), 110–154 | DOI | MR
[4] Oksendal B., Stokhasticheskie differentsialnye uravneniya. Vvedenie v teoriyu i prilozheniya, Mir, M., 2003
[5] Cardaliaguet P., Notes on mean field games from P.-L. Lions' lectures at College de France, Paris, 2012 | MR
[6] Guéant O., “A reference case for mean field games models”, J. Math. Pures et. Appl., 92:3 (2009), 276–294 | DOI | MR | Zbl
[7] Merton R. C., Continuous time finance, Wiley-Blackwell, Oxford, U.K., 1992
[8] Ingersoll Jr., Jonathan E., Theory of financial decision making, Rowman and Littlefield, Totowa, NJ, 1987 | MR
[9] Bielecki T., Pliska S., Sherris M., “Risk sensitive asset allocation”, J. Econ. Dynamics and Control, 24 (2000), 1145–1177 | DOI | MR | Zbl