On certain analytically solvable problems of mean field games theory
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the mean field games equations consisting of the coupled Kolmogorov–Fokker–Planck and Hamilton–Jacobi–Bellman equations. The equations are supplemented with initial and terminal conditions. It is shown that for a certain specific choice of data this problem can be reduced to solving a quadratically nonlinear ODE system. This situation occurs naturally in economic applications. As an example, the problem of forming an investor's opinion on an asset is considered.
@article{VMUMM_2020_4_a0,
     author = {S. I. Nikulin and O. S. Rozanova},
     title = {On certain analytically solvable problems of mean field games theory},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/}
}
TY  - JOUR
AU  - S. I. Nikulin
AU  - O. S. Rozanova
TI  - On certain analytically solvable problems of mean field games theory
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 3
EP  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/
LA  - ru
ID  - VMUMM_2020_4_a0
ER  - 
%0 Journal Article
%A S. I. Nikulin
%A O. S. Rozanova
%T On certain analytically solvable problems of mean field games theory
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 3-11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/
%G ru
%F VMUMM_2020_4_a0
S. I. Nikulin; O. S. Rozanova. On certain analytically solvable problems of mean field games theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 3-11. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/