On certain analytically solvable problems of mean field games theory
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the mean field games equations consisting of the coupled Kolmogorov–Fokker–Planck and Hamilton–Jacobi–Bellman equations. The equations are supplemented with initial and terminal conditions. It is shown that for a certain specific choice of data this problem can be reduced to solving a quadratically nonlinear ODE system. This situation occurs naturally in economic applications. As an example, the problem of forming an investor's opinion on an asset is considered.
@article{VMUMM_2020_4_a0,
     author = {S. I. Nikulin and O. S. Rozanova},
     title = {On certain analytically solvable problems of mean field games theory},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--11},
     year = {2020},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/}
}
TY  - JOUR
AU  - S. I. Nikulin
AU  - O. S. Rozanova
TI  - On certain analytically solvable problems of mean field games theory
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 3
EP  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/
LA  - ru
ID  - VMUMM_2020_4_a0
ER  - 
%0 Journal Article
%A S. I. Nikulin
%A O. S. Rozanova
%T On certain analytically solvable problems of mean field games theory
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 3-11
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/
%G ru
%F VMUMM_2020_4_a0
S. I. Nikulin; O. S. Rozanova. On certain analytically solvable problems of mean field games theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 3-11. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/

[1] Guéant O., Lasry J.-M., Lions P.-L., “Mean Field Games and applications”, Paris–Princeton lectures on mathematical finance, Springer, Paris, 2010, 205–266 | MR

[2] Lasry J. M., Lions P.-L., “Mean field games”, Jap. J. Math., 2:1 (2007), 229–260 | DOI | MR | Zbl

[3] Gomes D. A., Saede J., “Mean field games models — A brief survey”, Dynamic Games and Appl., 4:2 (2013), 110–154 | DOI | MR

[4] Oksendal B., Stokhasticheskie differentsialnye uravneniya. Vvedenie v teoriyu i prilozheniya, Mir, M., 2003

[5] Cardaliaguet P., Notes on mean field games from P.-L. Lions' lectures at College de France, Paris, 2012 | MR

[6] Guéant O., “A reference case for mean field games models”, J. Math. Pures et. Appl., 92:3 (2009), 276–294 | DOI | MR | Zbl

[7] Merton R. C., Continuous time finance, Wiley-Blackwell, Oxford, U.K., 1992

[8] Ingersoll Jr., Jonathan E., Theory of financial decision making, Rowman and Littlefield, Totowa, NJ, 1987 | MR

[9] Bielecki T., Pliska S., Sherris M., “Risk sensitive asset allocation”, J. Econ. Dynamics and Control, 24 (2000), 1145–1177 | DOI | MR | Zbl