On certain analytically solvable problems of mean field games theory
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 3-11
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the mean field games equations consisting of the coupled Kolmogorov–Fokker–Planck and Hamilton–Jacobi–Bellman equations. The equations are supplemented with initial and terminal conditions. It is shown that for a certain specific choice of data this problem can be reduced to solving a quadratically nonlinear ODE system. This situation occurs naturally in economic applications. As an example, the problem of forming an investor's opinion on an asset is considered.
			
            
            
            
          
        
      @article{VMUMM_2020_4_a0,
     author = {S. I. Nikulin and O. S. Rozanova},
     title = {On certain analytically solvable problems of mean field games theory},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/}
}
                      
                      
                    TY - JOUR AU - S. I. Nikulin AU - O. S. Rozanova TI - On certain analytically solvable problems of mean field games theory JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 3 EP - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/ LA - ru ID - VMUMM_2020_4_a0 ER -
S. I. Nikulin; O. S. Rozanova. On certain analytically solvable problems of mean field games theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2020), pp. 3-11. http://geodesic.mathdoc.fr/item/VMUMM_2020_4_a0/
