On uniqueness sets for Walsh–Paley series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 56-58
Cet article a éte moissonné depuis la source Math-Net.Ru
Classification of $U_p$-sets for Walsh system is obtained in terms of intervals of values of $p$, for which a given set is a $U_p$-set.
@article{VMUMM_2020_3_a9,
author = {T. D. Kozlovskaya},
title = {On uniqueness sets for {Walsh{\textendash}Paley} series},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {56--58},
year = {2020},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a9/}
}
T. D. Kozlovskaya. On uniqueness sets for Walsh–Paley series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 56-58. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a9/
[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR
[2] Billard P., “Sur la convergence presque partout des series de Fourier–Walsh functions de l'espace $L^2 (0,1)$”, Stud. Math., 28:3 (1967), 363–388 | DOI | MR | Zbl
[3] Gevorkian Y., “On coefficients of null-series and sets of uniqueness of trigonometric and Walsh systems”, Anal. Math., 14 (1988), 219–251 | DOI | MR | Zbl
[4] Gevorkyan G., “O mnozhestvakh edinstvennosti dlya nekotorykh ortogonalnykh ryadov”, Izv. AN ArmSSR, 18 (1983), 448–475 | MR | Zbl
[5] Kozlovskaya T. D., “Ob $U_p$-mnozhestvakh”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 11-i Saratov. zimnei shkoly (Saratov, 2002), 92–93