Topological types of isoenergy surfaces in the system of the Chaplygin ball with a rotor
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 52-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of rolling balanced dynamically nonsymmetric ball with a rotor on a rough horizontal plane is considered. Topological types of isoenergy surfaces of this integrable Hamiltonian system are found. Curves are constructed on the plane of the parameters $\mathbb{R}^2(h, c)$ separating it into regions so that all points from the same region correspond to isoenergy surfaces with identical Fomenko–Zieschang invariants.
@article{VMUMM_2020_3_a8,
     author = {A. I. Zhila},
     title = {Topological types of isoenergy surfaces in the system of the {Chaplygin} ball with a rotor},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {52--56},
     year = {2020},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/}
}
TY  - JOUR
AU  - A. I. Zhila
TI  - Topological types of isoenergy surfaces in the system of the Chaplygin ball with a rotor
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 52
EP  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/
LA  - ru
ID  - VMUMM_2020_3_a8
ER  - 
%0 Journal Article
%A A. I. Zhila
%T Topological types of isoenergy surfaces in the system of the Chaplygin ball with a rotor
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 52-56
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/
%G ru
%F VMUMM_2020_3_a8
A. I. Zhila. Topological types of isoenergy surfaces in the system of the Chaplygin ball with a rotor. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 52-56. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/

[1] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[2] Fomenko A. T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl

[3] Matveev S. V., Fomenko A. T., “Izoenergeticheskie poverkhnosti gamiltonovykh sistem, perechislenie trekhmernykh mnogoobrazii v poryadke vozrastaniya ikh slozhnosti i vychislenie ob'emov zamknutykh giperbolicheskikh mnogoobrazii”, Uspekhi matem. nauk, 43:1(259) (1988), 5–22 | MR | Zbl

[4] Fomenko A. T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 | Zbl

[5] Fomenko A. T., Nikolaenko S. S., “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. and Phys., 87 (2015), 115–133 | DOI | MR | Zbl

[6] Fomenko A. T., Konyaev A. Yu., “Algebra and geometry through Hamiltonian systems”, Continuous and Distributed Systems. Theory and Applications, Solid Mechanics and Its Application, 211, eds. V. Z. Zgurovsky, V. A. Sadovnichii, Springer, 2014, 3–21 | DOI | MR | Zbl

[7] Fomenko A. T., Konyaev A. Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl

[8] Kudryavtseva E. A., Fomenko A. T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN. Ser. matem., 446:6 (2012), 615–617 | Zbl

[9] Kudryavtseva E. A., Nikonov I. M., Fomenko A. T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | MR | Zbl

[10] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168

[11] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (1987), 793–795

[12] Bolsinov A. V. Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, RKhD, Izhevsk, 1999

[13] Moskvin A. Yu., “Shar Chaplygina s girostatom: osobye resheniya”, Nelineinaya dinamika, 5:3 (2009), 345–356