@article{VMUMM_2020_3_a8,
author = {A. I. Zhila},
title = {Topological types of isoenergy surfaces in the system of the {Chaplygin} ball with a rotor},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {52--56},
year = {2020},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/}
}
TY - JOUR AU - A. I. Zhila TI - Topological types of isoenergy surfaces in the system of the Chaplygin ball with a rotor JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 52 EP - 56 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/ LA - ru ID - VMUMM_2020_3_a8 ER -
A. I. Zhila. Topological types of isoenergy surfaces in the system of the Chaplygin ball with a rotor. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 52-56. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/
[1] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl
[2] Fomenko A. T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl
[3] Matveev S. V., Fomenko A. T., “Izoenergeticheskie poverkhnosti gamiltonovykh sistem, perechislenie trekhmernykh mnogoobrazii v poryadke vozrastaniya ikh slozhnosti i vychislenie ob'emov zamknutykh giperbolicheskikh mnogoobrazii”, Uspekhi matem. nauk, 43:1(259) (1988), 5–22 | MR | Zbl
[4] Fomenko A. T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 | Zbl
[5] Fomenko A. T., Nikolaenko S. S., “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. and Phys., 87 (2015), 115–133 | DOI | MR | Zbl
[6] Fomenko A. T., Konyaev A. Yu., “Algebra and geometry through Hamiltonian systems”, Continuous and Distributed Systems. Theory and Applications, Solid Mechanics and Its Application, 211, eds. V. Z. Zgurovsky, V. A. Sadovnichii, Springer, 2014, 3–21 | DOI | MR | Zbl
[7] Fomenko A. T., Konyaev A. Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl
[8] Kudryavtseva E. A., Fomenko A. T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN. Ser. matem., 446:6 (2012), 615–617 | Zbl
[9] Kudryavtseva E. A., Nikonov I. M., Fomenko A. T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | MR | Zbl
[10] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168
[11] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (1987), 793–795
[12] Bolsinov A. V. Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, RKhD, Izhevsk, 1999
[13] Moskvin A. Yu., “Shar Chaplygina s girostatom: osobye resheniya”, Nelineinaya dinamika, 5:3 (2009), 345–356