Topological types of isoenergy surfaces in the system of the Chaplygin ball with a rotor
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 52-56

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of rolling balanced dynamically nonsymmetric ball with a rotor on a rough horizontal plane is considered. Topological types of isoenergy surfaces of this integrable Hamiltonian system are found. Curves are constructed on the plane of the parameters $\mathbb{R}^2(h, c)$ separating it into regions so that all points from the same region correspond to isoenergy surfaces with identical Fomenko–Zieschang invariants.
@article{VMUMM_2020_3_a8,
     author = {A. I. Zhila},
     title = {Topological types of isoenergy surfaces in the system of the {Chaplygin} ball with a rotor},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {52--56},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/}
}
TY  - JOUR
AU  - A. I. Zhila
TI  - Topological types of isoenergy surfaces in the system of the Chaplygin ball with a rotor
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 52
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/
LA  - ru
ID  - VMUMM_2020_3_a8
ER  - 
%0 Journal Article
%A A. I. Zhila
%T Topological types of isoenergy surfaces in the system of the Chaplygin ball with a rotor
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 52-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/
%G ru
%F VMUMM_2020_3_a8
A. I. Zhila. Topological types of isoenergy surfaces in the system of the Chaplygin ball with a rotor. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 52-56. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a8/