Norm estimates for matrices with arbitrary elements constant in binary blocks
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 46-48
Cet article a éte moissonné depuis la source Math-Net.Ru
A sequence of recursively constructed matrices which are dyadic analogues of Hilbert matrices is considered. The operator norm of these matrices in a Euclidean space is studied. Estimates of norms of matrices optimal in order and their lower triangular parts are obtained.
@article{VMUMM_2020_3_a6,
author = {E. M. Dyuzhev},
title = {Norm estimates for matrices with arbitrary elements constant in binary blocks},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--48},
year = {2020},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a6/}
}
E. M. Dyuzhev. Norm estimates for matrices with arbitrary elements constant in binary blocks. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 46-48. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a6/