Norm estimates for matrices with arbitrary elements constant in binary blocks
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 46-48
Voir la notice de l'article provenant de la source Math-Net.Ru
A sequence of recursively constructed matrices which are dyadic analogues of Hilbert matrices is considered.
The operator norm of these matrices in a Euclidean space is studied.
Estimates of norms of matrices optimal in order and their lower triangular parts are obtained.
@article{VMUMM_2020_3_a6,
author = {E. M. Dyuzhev},
title = {Norm estimates for matrices with arbitrary elements constant in binary blocks},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--48},
publisher = {mathdoc},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a6/}
}
TY - JOUR AU - E. M. Dyuzhev TI - Norm estimates for matrices with arbitrary elements constant in binary blocks JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 46 EP - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a6/ LA - ru ID - VMUMM_2020_3_a6 ER -
E. M. Dyuzhev. Norm estimates for matrices with arbitrary elements constant in binary blocks. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 46-48. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a6/