Norm estimates for matrices with arbitrary elements constant in binary blocks
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 46-48

Voir la notice de l'article provenant de la source Math-Net.Ru

A sequence of recursively constructed matrices which are dyadic analogues of Hilbert matrices is considered. The operator norm of these matrices in a Euclidean space is studied. Estimates of norms of matrices optimal in order and their lower triangular parts are obtained.
@article{VMUMM_2020_3_a6,
     author = {E. M. Dyuzhev},
     title = {Norm estimates for matrices with arbitrary elements constant in binary blocks},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {46--48},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a6/}
}
TY  - JOUR
AU  - E. M. Dyuzhev
TI  - Norm estimates for matrices with arbitrary elements constant in binary blocks
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 46
EP  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a6/
LA  - ru
ID  - VMUMM_2020_3_a6
ER  - 
%0 Journal Article
%A E. M. Dyuzhev
%T Norm estimates for matrices with arbitrary elements constant in binary blocks
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 46-48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a6/
%G ru
%F VMUMM_2020_3_a6
E. M. Dyuzhev. Norm estimates for matrices with arbitrary elements constant in binary blocks. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 46-48. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a6/