On strong forms of homogeneity of topological spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 39-42

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a strongly homogeneous $G$-space is introduced and conditions of equivalence of continuous homogeneity to strong homogeneity are obtained. The topological structure of an acting group of a strongly homogeneous $G$-space is established.
@article{VMUMM_2020_3_a4,
     author = {B. V. Sorin},
     title = {On strong forms of homogeneity of topological spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--42},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a4/}
}
TY  - JOUR
AU  - B. V. Sorin
TI  - On strong forms of homogeneity of topological spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 39
EP  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a4/
LA  - ru
ID  - VMUMM_2020_3_a4
ER  - 
%0 Journal Article
%A B. V. Sorin
%T On strong forms of homogeneity of topological spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 39-42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a4/
%G ru
%F VMUMM_2020_3_a4
B. V. Sorin. On strong forms of homogeneity of topological spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 39-42. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a4/