@article{VMUMM_2020_3_a3,
author = {A. V. Khokhlov},
title = {Criteria of non-monotonicity and negativity of the {Poisson} coefficient for isotropic viscoelastic materials described by the nonlinear {Rabotnov} relation},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {32--38},
year = {2020},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a3/}
}
TY - JOUR AU - A. V. Khokhlov TI - Criteria of non-monotonicity and negativity of the Poisson coefficient for isotropic viscoelastic materials described by the nonlinear Rabotnov relation JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 32 EP - 38 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a3/ LA - ru ID - VMUMM_2020_3_a3 ER -
%0 Journal Article %A A. V. Khokhlov %T Criteria of non-monotonicity and negativity of the Poisson coefficient for isotropic viscoelastic materials described by the nonlinear Rabotnov relation %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2020 %P 32-38 %N 3 %U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a3/ %G ru %F VMUMM_2020_3_a3
A. V. Khokhlov. Criteria of non-monotonicity and negativity of the Poisson coefficient for isotropic viscoelastic materials described by the nonlinear Rabotnov relation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 32-38. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a3/
[1] Tschoegl N. W., Knauss W. G., Emri I., “Poisson's ratio in linear viscoelasticity — a critical review”, Mech. Time-Dependent Mater., 6:1 (2002), 3–51 | DOI
[2] Lomakin E. V., “Mekhanika sred s zavisyaschimi ot vida napryazhennogo sostoyaniya svoistvami”, Fiz. mezomekh., 10:5 (2007), 41–52
[3] O'Brien D. J., Sottos N. R., White S. R., “Cure-dependent viscoelastic Poisson's ratio of epoxy”, Exp. mech., 47 (2007), 237–249 | DOI
[4] Tscharnuter D., Jerabek M., Major Z., Lang R. W., “Time-dependent Poisson's ratio of polypropylene compounds for various strain histories”, Mech. Time-Dependent Mater., 15:1 (2011), 15–28 | DOI | MR
[5] Kastner M., Obst M., Brummund J. et al., “Inelastic material behavior of polymers — Experimental characterization, formulation and implementation of a material model”, Mech. Mater., 52 (2012), 40–57 | DOI
[6] Zhukov A. M., “O koeffitsiente Puassona v plasticheskoi oblasti”, Izv. AN SSSR. Otd. tekhn. nauk, 1954, no. 12, 86–91
[7] Brekhova V. D., “Issledovanie koeffitsienta Puassona pri szhatii nekotorykh kristallicheskikh polimerov postoyannoi nagruzkoi”, Mekhan. polimer., 1965, no. 4, 43–46
[8] Dzene I. Ya., Putans A. V., “Koeffitsient Puassona pri odnomernoi polzuchesti polietilena”, Mekhan. polimer., 1967, no. 5, 947–949
[9] Kozhevnikova M. E., “Kharakter izmeneniya granitsy zony plastichnosti i koeffitsienta Puassona v zavisimosti ot plasticheskogo razrykhleniya”, Fiz. mezomekh., 15:6 (2012), 59–66
[10] Lomakin E. V., “Nelineinaya deformatsiya materialov, soprotivlenie kotorykh zavisit ot vida napryazhennogo sostoyaniya”, Izv. AN SSSR. Mekhan. tverdogo tela, 1980, no. 4, 92–99
[11] Shekhar H., Sahasrabudhe A. D., “Longitudinal strain dependent variation of Poisson's ratio for HTPB based solid rocket propellants in uniaxial tensile testing”, Propellants, Explosives, Pyrotechnics, 36:6 (2011), 558–563 | DOI
[12] Cui H. R., Tang G. J., Shen Z. B., “Study on viscoelastic Poisson's ratio of solid propellants using digital image correlation method”, Propellants Explosives Pyrotechnics, 41:5 (2016), 835–843 | DOI
[13] Dzene I. Ya., Kregers A. F., Vilks U. K., “Osobennosti protsessa deformirovaniya pri polzuchesti i povtornoi polzuchesti polimerov v usloviyakh odnoosnogo rastyazheniya. Ch. 1”, Mekhan. polimer., 1974, no. 3, 399–405
[14] Lakes R., “Foam structure with a negative Poisson's ratio”, Science, 235 (1987), 1038–1040 | DOI
[15] Berlin Al.Al., Rotenburg L., Basert R., “Struktura izotropnykh materialov s otritsatelnym koeffitsientom Puassona”, Vysokomolekul. soedineniya. B, 33:8 (1991), 619–621
[16] Milton G. W., “Composite materials with Poisson's ratios close to $-1$”, J. Mech. and Phys. Solids, 40 (1992), 1105–1137 | DOI | MR | Zbl
[17] Lakes R. S., Elms K., “Indentability of conventional and negative Poisson's ratio foams”, J. Compos. Mater., 27 (1993), 1193–1202 | DOI
[18] Saddock B. D., Evans K. E., “Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses”, Biomater., 16 (1995), 1109–1115 | DOI
[19] Chan N., Evans K. E., “Indentation resilience of conventional and auxetic foams”, J. Cell. Plast., 34 (1998), 231–260 | DOI
[20] Konek D. A., Voitsekhovski K. V., Pleskachevskii Yu. M., Shilko S. V., “Materialy s otritsatelnym koeffitsientom Puassona (OBZOR)”, Mekhan. kompoz. materialov i konstruktsii, 10:1 (2004), 35–69
[21] Fischer-Cripps A. C., Nanoindentation, Springer, N. Y., 2002
[22] Oliver W. C., Pharr G. M., “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology”, J. Mater. Res., 19 (2004), 3–20 | DOI
[23] Oyen M., “Analytical techniques for indentation of viscoelastic materials”, Phil. Mag., 86 (2006), 5625–5641 | DOI
[24] Golovin Yu. I., Nanoindentirovanie i ego vozmozhnosti, Mashinostroenie, M., 2009
[25] Khokhlov A. V., “Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions”, Moscow University Mechanics Bulletin, 72:5 (2017), 103–107 | DOI | Zbl
[26] Khokhlov A. V., “Analiz obschikh svoistv krivykh polzuchesti pri stupenchatom nagruzhenii, porozhdaemykh nelineinym sootnosheniem Rabotnova dlya vyazkouprugoplastichnykh materialov”, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. nauki, 2017, no. 3, 93–123 | DOI
[27] Khokhlov A. V., “Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-linear hereditary theory”, Mech. Compos. Mater., 54:4 (2018), 473–486 | DOI
[28] Khokhlov A. V., “Svoistva semeistva diagramm deformirovaniya, porozhdaemykh nelineinym sootnosheniem Yu. N. Rabotnova dlya vyazkouprugoplastichnykh materialov”, Izv. RAN. Mekhan. tverdogo tela, 2019, no. 2, 29–47 | DOI
[29] Khokhlov A. V., “Effect of the Initial Stage of Strain on the Properties of Relaxation Curves Generated by the Rabotnov Nonlinear Relation for Viscoelastic Materials”, Moscow University Mechanics Bulletin, 74:4 (2019), 83–88 | DOI | Zbl
[30] Rabotnov Yu. N., “Ravnovesie uprugoi sredy s posledeistviem”, Prikl. matem. i mekhan., 12:1 (1948), 53–62 | MR | Zbl
[31] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1966
[32] Dergunov N. N., Papernik L. Kh., Rabotnov Yu. N., “Analiz povedeniya grafita na osnove nelineinoi nasledstvennoi teorii”, Prikl. matem. i tekhn. fiz., 12:2 (1971), 76–82
[33] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977
[34] Suvorova Yu. V., “O nelineino-nasledstvennom uravnenii Yu. N. Rabotnova i ego prilozheniyakh”, Izv. PAN. Mekhan. tverdogo tela, 2004, no. 1, 174–181
[35] Alekseeva S. I., Fronya M. A., Viktorova I. V., “Analiz vyazkouprugikh svoistv polimernykh kompozitov s uglerodnymi nanonapolnitelyami”, Kompozity i nanostruktury, 2011, no. 2, 28–39
[36] Fung Y. C., “Stress-strain history relations of soft tissues in simple elongation”, Biomechanics, Its Foundations and Objectives, eds. Y.C. Fung et al., Prentice-Hall, New Jersey, 1972, 181–208
[37] Fung Y. C., Biomechanics. Mechanical Properties of Living Tissues, Springer-Verlag, N.Y., 1993
[38] De Frate L. E., Li G., “The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model”, Biomech. and Model. Mechanobiol., 6:4 (2007), 245–251 | DOI
[39] Lakes R. S., Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009
[40] De Pascalis R., Abrahams I. D., Parnell W. J., “On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model”, Proc. Roy. Soc. A, 470 (2014), 20140058 | DOI
[41] Lomakin V. A., Koltunov M. A., “Modelirovanie protsessa deformatsii nelineinykh vyazkouprugikh sred”, Mekhan. polimer., 1967, no. 2, 221–227
[42] Khokhlov A. V., “Analiz svoistv krivykh polzuchesti s proizvolnoi nachalnoi stadiei nagruzheniya, porozhdaemykh lineinoi teoriei nasledstvennosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:1 (2018), 65–95 | DOI | Zbl
[43] Khokhlov A. V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI
[44] Khokhlov A. V., “Analiz vozmozhnostei opisaniya vliyaniya gidrostaticheskogo davleniya na krivye polzuchesti pri rastyazhenii i koeffitsient Puassona reonomnykh materialov v ramkakh lineinoi teorii vyazkouprugosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:2 (2019), 304–340 | DOI | MR | Zbl
[45] Khokhlov A. V., “Analiz vliyaniya ob'emnoi polzuchesti na krivye nagruzheniya s postoyannoi skorostyu i evolyutsiyu koeffitsienta Puassona v ramkakh lineinoi teorii vyazkouprugosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:4 (2019), 671–704 | DOI | Zbl