Criteria of non-monotonicity and negativity of the Poisson coefficient for isotropic viscoelastic materials described by the nonlinear Rabotnov relation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 32-38
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

General properties of the theoretic creep curves for volumetric, longitudinal and lateral strain generated by the Rabotnov physically nonlinear constitutive equation for non-aging viscoelastic materials under uniaxial loading are studied analytically assuming four material functions of the relation are arbitrary. The expressions for Poisson's ratio via the strain state parameter and via four material functions of the model are derived. The Poisson ratio dependence on time, stress level and material functions are examined. General two-sided bound for its range is obtained. It is proved that the Rabotnov relation is able to simulate non-monotone behavior and sign changes of lateral strain and Poisson's ratio. The restrictions on material functions providing negative Poisson's ratio values are found and the criterion for its nondependence on time is formulated.
@article{VMUMM_2020_3_a3,
     author = {A. V. Khokhlov},
     title = {Criteria of non-monotonicity and negativity of the {Poisson} coefficient for isotropic viscoelastic materials described by the nonlinear {Rabotnov} relation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {32--38},
     year = {2020},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a3/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - Criteria of non-monotonicity and negativity of the Poisson coefficient for isotropic viscoelastic materials described by the nonlinear Rabotnov relation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 32
EP  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a3/
LA  - ru
ID  - VMUMM_2020_3_a3
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T Criteria of non-monotonicity and negativity of the Poisson coefficient for isotropic viscoelastic materials described by the nonlinear Rabotnov relation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 32-38
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a3/
%G ru
%F VMUMM_2020_3_a3
A. V. Khokhlov. Criteria of non-monotonicity and negativity of the Poisson coefficient for isotropic viscoelastic materials described by the nonlinear Rabotnov relation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 32-38. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a3/

[1] Tschoegl N. W., Knauss W. G., Emri I., “Poisson's ratio in linear viscoelasticity — a critical review”, Mech. Time-Dependent Mater., 6:1 (2002), 3–51 | DOI

[2] Lomakin E. V., “Mekhanika sred s zavisyaschimi ot vida napryazhennogo sostoyaniya svoistvami”, Fiz. mezomekh., 10:5 (2007), 41–52

[3] O'Brien D. J., Sottos N. R., White S. R., “Cure-dependent viscoelastic Poisson's ratio of epoxy”, Exp. mech., 47 (2007), 237–249 | DOI

[4] Tscharnuter D., Jerabek M., Major Z., Lang R. W., “Time-dependent Poisson's ratio of polypropylene compounds for various strain histories”, Mech. Time-Dependent Mater., 15:1 (2011), 15–28 | DOI | MR

[5] Kastner M., Obst M., Brummund J. et al., “Inelastic material behavior of polymers — Experimental characterization, formulation and implementation of a material model”, Mech. Mater., 52 (2012), 40–57 | DOI

[6] Zhukov A. M., “O koeffitsiente Puassona v plasticheskoi oblasti”, Izv. AN SSSR. Otd. tekhn. nauk, 1954, no. 12, 86–91

[7] Brekhova V. D., “Issledovanie koeffitsienta Puassona pri szhatii nekotorykh kristallicheskikh polimerov postoyannoi nagruzkoi”, Mekhan. polimer., 1965, no. 4, 43–46

[8] Dzene I. Ya., Putans A. V., “Koeffitsient Puassona pri odnomernoi polzuchesti polietilena”, Mekhan. polimer., 1967, no. 5, 947–949

[9] Kozhevnikova M. E., “Kharakter izmeneniya granitsy zony plastichnosti i koeffitsienta Puassona v zavisimosti ot plasticheskogo razrykhleniya”, Fiz. mezomekh., 15:6 (2012), 59–66

[10] Lomakin E. V., “Nelineinaya deformatsiya materialov, soprotivlenie kotorykh zavisit ot vida napryazhennogo sostoyaniya”, Izv. AN SSSR. Mekhan. tverdogo tela, 1980, no. 4, 92–99

[11] Shekhar H., Sahasrabudhe A. D., “Longitudinal strain dependent variation of Poisson's ratio for HTPB based solid rocket propellants in uniaxial tensile testing”, Propellants, Explosives, Pyrotechnics, 36:6 (2011), 558–563 | DOI

[12] Cui H. R., Tang G. J., Shen Z. B., “Study on viscoelastic Poisson's ratio of solid propellants using digital image correlation method”, Propellants Explosives Pyrotechnics, 41:5 (2016), 835–843 | DOI

[13] Dzene I. Ya., Kregers A. F., Vilks U. K., “Osobennosti protsessa deformirovaniya pri polzuchesti i povtornoi polzuchesti polimerov v usloviyakh odnoosnogo rastyazheniya. Ch. 1”, Mekhan. polimer., 1974, no. 3, 399–405

[14] Lakes R., “Foam structure with a negative Poisson's ratio”, Science, 235 (1987), 1038–1040 | DOI

[15] Berlin Al.Al., Rotenburg L., Basert R., “Struktura izotropnykh materialov s otritsatelnym koeffitsientom Puassona”, Vysokomolekul. soedineniya. B, 33:8 (1991), 619–621

[16] Milton G. W., “Composite materials with Poisson's ratios close to $-1$”, J. Mech. and Phys. Solids, 40 (1992), 1105–1137 | DOI | MR | Zbl

[17] Lakes R. S., Elms K., “Indentability of conventional and negative Poisson's ratio foams”, J. Compos. Mater., 27 (1993), 1193–1202 | DOI

[18] Saddock B. D., Evans K. E., “Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses”, Biomater., 16 (1995), 1109–1115 | DOI

[19] Chan N., Evans K. E., “Indentation resilience of conventional and auxetic foams”, J. Cell. Plast., 34 (1998), 231–260 | DOI

[20] Konek D. A., Voitsekhovski K. V., Pleskachevskii Yu. M., Shilko S. V., “Materialy s otritsatelnym koeffitsientom Puassona (OBZOR)”, Mekhan. kompoz. materialov i konstruktsii, 10:1 (2004), 35–69

[21] Fischer-Cripps A. C., Nanoindentation, Springer, N. Y., 2002

[22] Oliver W. C., Pharr G. M., “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology”, J. Mater. Res., 19 (2004), 3–20 | DOI

[23] Oyen M., “Analytical techniques for indentation of viscoelastic materials”, Phil. Mag., 86 (2006), 5625–5641 | DOI

[24] Golovin Yu. I., Nanoindentirovanie i ego vozmozhnosti, Mashinostroenie, M., 2009

[25] Khokhlov A. V., “Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions”, Moscow University Mechanics Bulletin, 72:5 (2017), 103–107 | DOI | Zbl

[26] Khokhlov A. V., “Analiz obschikh svoistv krivykh polzuchesti pri stupenchatom nagruzhenii, porozhdaemykh nelineinym sootnosheniem Rabotnova dlya vyazkouprugoplastichnykh materialov”, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. nauki, 2017, no. 3, 93–123 | DOI

[27] Khokhlov A. V., “Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-linear hereditary theory”, Mech. Compos. Mater., 54:4 (2018), 473–486 | DOI

[28] Khokhlov A. V., “Svoistva semeistva diagramm deformirovaniya, porozhdaemykh nelineinym sootnosheniem Yu. N. Rabotnova dlya vyazkouprugoplastichnykh materialov”, Izv. RAN. Mekhan. tverdogo tela, 2019, no. 2, 29–47 | DOI

[29] Khokhlov A. V., “Effect of the Initial Stage of Strain on the Properties of Relaxation Curves Generated by the Rabotnov Nonlinear Relation for Viscoelastic Materials”, Moscow University Mechanics Bulletin, 74:4 (2019), 83–88 | DOI | Zbl

[30] Rabotnov Yu. N., “Ravnovesie uprugoi sredy s posledeistviem”, Prikl. matem. i mekhan., 12:1 (1948), 53–62 | MR | Zbl

[31] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1966

[32] Dergunov N. N., Papernik L. Kh., Rabotnov Yu. N., “Analiz povedeniya grafita na osnove nelineinoi nasledstvennoi teorii”, Prikl. matem. i tekhn. fiz., 12:2 (1971), 76–82

[33] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977

[34] Suvorova Yu. V., “O nelineino-nasledstvennom uravnenii Yu. N. Rabotnova i ego prilozheniyakh”, Izv. PAN. Mekhan. tverdogo tela, 2004, no. 1, 174–181

[35] Alekseeva S. I., Fronya M. A., Viktorova I. V., “Analiz vyazkouprugikh svoistv polimernykh kompozitov s uglerodnymi nanonapolnitelyami”, Kompozity i nanostruktury, 2011, no. 2, 28–39

[36] Fung Y. C., “Stress-strain history relations of soft tissues in simple elongation”, Biomechanics, Its Foundations and Objectives, eds. Y.C. Fung et al., Prentice-Hall, New Jersey, 1972, 181–208

[37] Fung Y. C., Biomechanics. Mechanical Properties of Living Tissues, Springer-Verlag, N.Y., 1993

[38] De Frate L. E., Li G., “The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model”, Biomech. and Model. Mechanobiol., 6:4 (2007), 245–251 | DOI

[39] Lakes R. S., Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009

[40] De Pascalis R., Abrahams I. D., Parnell W. J., “On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model”, Proc. Roy. Soc. A, 470 (2014), 20140058 | DOI

[41] Lomakin V. A., Koltunov M. A., “Modelirovanie protsessa deformatsii nelineinykh vyazkouprugikh sred”, Mekhan. polimer., 1967, no. 2, 221–227

[42] Khokhlov A. V., “Analiz svoistv krivykh polzuchesti s proizvolnoi nachalnoi stadiei nagruzheniya, porozhdaemykh lineinoi teoriei nasledstvennosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:1 (2018), 65–95 | DOI | Zbl

[43] Khokhlov A. V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI

[44] Khokhlov A. V., “Analiz vozmozhnostei opisaniya vliyaniya gidrostaticheskogo davleniya na krivye polzuchesti pri rastyazhenii i koeffitsient Puassona reonomnykh materialov v ramkakh lineinoi teorii vyazkouprugosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:2 (2019), 304–340 | DOI | MR | Zbl

[45] Khokhlov A. V., “Analiz vliyaniya ob'emnoi polzuchesti na krivye nagruzheniya s postoyannoi skorostyu i evolyutsiyu koeffitsienta Puassona v ramkakh lineinoi teorii vyazkouprugosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:4 (2019), 671–704 | DOI | Zbl