On construction of an attainability set in the neighborhood of a periodic attractor
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 67-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work presents the definition, properties and a method of construction of attainability set in the neighborhood of the periodic attractor of a nonlinear dynamical system and solves the problem of inverse transition in a bistable system.
@article{VMUMM_2020_3_a12,
     author = {I. S. Konovalenko},
     title = {On construction of an attainability set in the neighborhood of a periodic attractor},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {67--71},
     year = {2020},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a12/}
}
TY  - JOUR
AU  - I. S. Konovalenko
TI  - On construction of an attainability set in the neighborhood of a periodic attractor
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 67
EP  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a12/
LA  - ru
ID  - VMUMM_2020_3_a12
ER  - 
%0 Journal Article
%A I. S. Konovalenko
%T On construction of an attainability set in the neighborhood of a periodic attractor
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 67-71
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a12/
%G ru
%F VMUMM_2020_3_a12
I. S. Konovalenko. On construction of an attainability set in the neighborhood of a periodic attractor. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a12/

[1] Aleksandrov V. V., Boltyanskii V. G., Lemak S. S., Parusnikov N. A., Tikhomirov V. M., Optimalnoe upravlenie dvizheniem, FIZMATLIT, M., 2009

[2] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, 2-e izd., Izd-vo MGU, M., 1998

[3] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 7–140

[4] Tikhonova K. V., Matematicheskie zadachi korrektsii aktivnosti vestibulyarnykh mekhanoretseptorov, Kand. dis., M., 2019 | Zbl

[5] Sadovnichii V. A., Aleksandrov V. V., Aleksandrova T. B., Vega R., Konovalenko I. S., Soto E., Tikhonova K. V., Gordilo Dominguez Kh. L., Gonzalez O., “O galvanicheskoi korrektsii vestibulyarnoi aktivnosti pilota pri vizualnom upravlenii poletom”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 1, 34–41

[6] Aleksandrov V. V., Aleksandrova T. B., Konovalenko I. S., Tikhonova K. V., “Vozmuschaemye stabilnye sistemy na ploskosti, II”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 1, 53–57 | Zbl