On construction of an attainability set in the neighborhood of a periodic attractor
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 67-71

Voir la notice de l'article provenant de la source Math-Net.Ru

The work presents the definition, properties and a method of construction of attainability set in the neighborhood of the periodic attractor of a nonlinear dynamical system and solves the problem of inverse transition in a bistable system.
@article{VMUMM_2020_3_a12,
     author = {I. S. Konovalenko},
     title = {On construction of an attainability set in the neighborhood of a periodic attractor},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {67--71},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a12/}
}
TY  - JOUR
AU  - I. S. Konovalenko
TI  - On construction of an attainability set in the neighborhood of a periodic attractor
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 67
EP  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a12/
LA  - ru
ID  - VMUMM_2020_3_a12
ER  - 
%0 Journal Article
%A I. S. Konovalenko
%T On construction of an attainability set in the neighborhood of a periodic attractor
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 67-71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a12/
%G ru
%F VMUMM_2020_3_a12
I. S. Konovalenko. On construction of an attainability set in the neighborhood of a periodic attractor. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a12/