@article{VMUMM_2020_3_a11,
author = {A. M. Shmatkov},
title = {Periodic solutions to the optimal control problem of rotation of a rigid body using internal mass},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {63--67},
year = {2020},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a11/}
}
TY - JOUR AU - A. M. Shmatkov TI - Periodic solutions to the optimal control problem of rotation of a rigid body using internal mass JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 63 EP - 67 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a11/ LA - ru ID - VMUMM_2020_3_a11 ER -
A. M. Shmatkov. Periodic solutions to the optimal control problem of rotation of a rigid body using internal mass. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a11/
[1] Schmoeckel F., Worn H., “Remotely Controllable Microrobots Acting as Nano Positioners and Intelligent Tweezers in Scanning Electron Microscopes (SEMs)”, Proc. Int. Conf. Robotics and Automation, v. 4, IEEE, 2001, 3903–3913
[2] Vartholomeos P., Papadopoulos E., “Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators”, Trans. ASME. J. Dynamical Systems, Measurement and Control, 128 (2006), 122–133 | DOI
[3] Chernousko F. L., “Two-dimensional motions of a body containing internal moving masses”, Meccanica, 51:12 (2016), 3203–3209 | DOI | MR
[4] Chernousko F. L., “Optimalnoe upravlenie dvizheniem dvukhmassovoi sistemy”, Dokl. RAN, 480:5 (2018), 528–532 | Zbl
[5] Shmatkov A. M., “Povorot tela za kratchaishee vremya peremescheniem tochechnoi massy”, Dokl. RAN, 481:5 (2018), 498–502
[6] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969 | MR