Periodic solutions to the optimal control problem of rotation of a rigid body using internal mass
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 63-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-dimensional problem of time-optimal rotation of a mechanical system consisting of a rigid body and a mass point is considered. The mass point interacts with the body by internal forces only. The periodic optimal trajectories of the mass point passing through the rigid body center of inertia are found.
@article{VMUMM_2020_3_a11,
     author = {A. M. Shmatkov},
     title = {Periodic solutions to the optimal control problem of rotation of a rigid body using internal mass},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     year = {2020},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a11/}
}
TY  - JOUR
AU  - A. M. Shmatkov
TI  - Periodic solutions to the optimal control problem of rotation of a rigid body using internal mass
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 63
EP  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a11/
LA  - ru
ID  - VMUMM_2020_3_a11
ER  - 
%0 Journal Article
%A A. M. Shmatkov
%T Periodic solutions to the optimal control problem of rotation of a rigid body using internal mass
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 63-67
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a11/
%G ru
%F VMUMM_2020_3_a11
A. M. Shmatkov. Periodic solutions to the optimal control problem of rotation of a rigid body using internal mass. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a11/

[1] Schmoeckel F., Worn H., “Remotely Controllable Microrobots Acting as Nano Positioners and Intelligent Tweezers in Scanning Electron Microscopes (SEMs)”, Proc. Int. Conf. Robotics and Automation, v. 4, IEEE, 2001, 3903–3913

[2] Vartholomeos P., Papadopoulos E., “Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators”, Trans. ASME. J. Dynamical Systems, Measurement and Control, 128 (2006), 122–133 | DOI

[3] Chernousko F. L., “Two-dimensional motions of a body containing internal moving masses”, Meccanica, 51:12 (2016), 3203–3209 | DOI | MR

[4] Chernousko F. L., “Optimalnoe upravlenie dvizheniem dvukhmassovoi sistemy”, Dokl. RAN, 480:5 (2018), 528–532 | Zbl

[5] Shmatkov A. M., “Povorot tela za kratchaishee vremya peremescheniem tochechnoi massy”, Dokl. RAN, 481:5 (2018), 498–502

[6] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969 | MR