Criteria for the height of an atom
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 12-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we establish three criteria for the height of an atom in terms of its $f$-graph. The obstacles to the oriented embeddability of the $f$-graph into the plane are found. We investigate the combinatorial properties of labeled oriented cycles, which are a generalization of chord diagrams.
@article{VMUMM_2020_3_a1,
     author = {V. A. Trifonova},
     title = {Criteria for the height of an atom},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {12--24},
     year = {2020},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a1/}
}
TY  - JOUR
AU  - V. A. Trifonova
TI  - Criteria for the height of an atom
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 12
EP  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a1/
LA  - ru
ID  - VMUMM_2020_3_a1
ER  - 
%0 Journal Article
%A V. A. Trifonova
%T Criteria for the height of an atom
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 12-24
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a1/
%G ru
%F VMUMM_2020_3_a1
V. A. Trifonova. Criteria for the height of an atom. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 12-24. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a1/

[1] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy, v. 1, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999

[2] Manturov V. O., “Bifurkatsii, atomy i uzly”, Vestn. Mosk. un-ta. Matem. Mekhan., 2000, no. 1, 3–8 | Zbl

[3] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[4] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl

[5] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1 (1989), 145–173 | MR

[6] Fomenko A. T., “Teoriya bordizmov integriruemykh gamiltonovykh nevyrozhdennykh sistem s dvumya stepenyami svobody. Novyi topologichekii invariant mnogomernykh integriruemykh sistem”, Izv. AN SSSR. Ser. matem., 55:4 (1990), 747–779

[7] Fomenko A. T., “Topologicheskii invariant, grubo klassifitsiruyuschii integriruemye strogo nevyrozhdennye gamiltoniany na chetyrekhmernykh simplekticheskikh mnogoobraziyakh”, Funkts. analiz i ego pril., 25:4 (1991), 23–35 | MR

[8] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[9] Ilyutko D. P., Manturov V. O., Virtual knots: the state of the art, Series on knots and everything, 51, World Scientific, Singapore, 2012 | MR

[10] Nikonov I. M., “Vysotnye atomy s tranzitivnoi na vershinakh gruppoi simmetrii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 6, 17–25 | Zbl

[11] Trifonova V. A., “Vysotnye chastichno simmetrichnye atomy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 2, 33–41 | MR | Zbl

[12] Volchanetskii N. V., Nikonov I. M., “Maksimalno simmetrichnye vysotnye atomy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 2, 3–6 | MR | Zbl

[13] Oshemkov A. A., “Funktsii Morsa na dvumernykh poverkhnostyakh. Kodirovanie osobennostei”, Tr. Matem. in-ta RAN, 205, 1994, 131–140 | Zbl

[14] Bouchet A., “Circle graph obstructions”, J. Combin. Theory. Ser. B, 60 (1994), 107–144 | DOI | MR | Zbl

[15] Chmutov S., Duzhin S., Lando S., “Vassiliev knot invariants II. Intersection graph conjecture for trees, singularities and bifurcations”, Adv. Sov. Math., 21 (1994), 127–134 | MR | Zbl

[16] Mellor B., “The intersection graph conjecture for loop diagrams”, J. knot theory ramifications, 9 (2000), 187–211 | DOI | MR | Zbl

[17] Chmutov S., Lando S., “Mutant knots and intersection graphs”, Algebr. and Geom. Topol., 7 (2007), 1579–1598 | DOI | MR | Zbl