Algorithmic construction of two-dimensional singular layers of billiard atoms in non-convex domains
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Flat billiards in not-convex areas bounded by segments of confocal quadrics are studied. The topology of 2-dimensional layers of Fomenko's atoms is studied and a constructing algorithm is presented.
@article{VMUMM_2020_3_a0,
     author = {V. A. Moskvin},
     title = {Algorithmic construction of two-dimensional singular layers of billiard atoms in non-convex domains},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--12},
     year = {2020},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a0/}
}
TY  - JOUR
AU  - V. A. Moskvin
TI  - Algorithmic construction of two-dimensional singular layers of billiard atoms in non-convex domains
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 3
EP  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a0/
LA  - ru
ID  - VMUMM_2020_3_a0
ER  - 
%0 Journal Article
%A V. A. Moskvin
%T Algorithmic construction of two-dimensional singular layers of billiard atoms in non-convex domains
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 3-12
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a0/
%G ru
%F VMUMM_2020_3_a0
V. A. Moskvin. Algorithmic construction of two-dimensional singular layers of billiard atoms in non-convex domains. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2020), pp. 3-12. http://geodesic.mathdoc.fr/item/VMUMM_2020_3_a0/

[1] Tabachnikov S. L., Geometriya i bilyardy, NITs “RKhD”, M.–Izhevsk, 2011

[2] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, NITs “RKhD”, Izhevsk, 1999

[3] Dragovic V., Radnovic M., “Bifurcations of Liouville tori in elliptical billiards”, Regular Chaotic Dyn. RAN, 14 (2009), 479–494 | DOI | MR | Zbl

[4] Dragovich B., Radnovich M., Integriruemye bilyardy, kvadriki i mnogomernye porizmy Ponsele, NITs “RKhD”, M.–Izhevsk, 2010

[5] Dragovic V., Radnovic M., “Pseudo-integrable billiards and arithmetic dynamics”, Modern Dynamics, 8:1 (2014), 109–132 | DOI | MR | Zbl

[6] Dragovic V., Radnovic M., “Pseudo-integrable billiards and double-reflection nets”, Russ. Math. Surveys, 70:1 (2015), 1–31 | DOI | MR | Zbl

[7] Dragovic V., Radnovic M., “Periods of pseudo-integrable billiards”, Arnold Math., 1:1 (2015), 69–73 | DOI | MR | Zbl

[8] Bolsinov A. V., Fomenko A. T., Oshemkov A. A., Topological methods in the theory of integrable Hamiltonian, Cambridge Scientific Publishers, Cambridge, 2006 | MR

[9] Kudryavtseva E. A., Nikonov I. M., Fomenko A. T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | MR | Zbl

[10] Kudryavtseva E. A., Nikonov I. M., Fomenko A. T., “Simmetrichnye i neprivodimye abstraktnye mnogogranniki”, Geometriya i topologiya, Sovremennye problemy matematiki i mekhaniki. Matematika, 3, no. 2, Izd-vo TsPI pri mekh.-mat. f-te MGU, 2009, 58–97

[11] Kudryavtseva E. A., Fomenko A. T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN. Cer. matem., 446:6 (2012), 615–617 | Zbl

[12] Kudryavtseva E. A., Fomenko A. T., “Lyubaya konechnaya gruppa yavlyaetsya gruppoi simmetrii nekotoroi karty (“atoma”-bifurkatsii)”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 3, 21–29 | MR | Zbl

[13] “Integrable billiards model important integrable cases of rigid body dynamics”, Doklady Math., 92:3 (2015), 1–3 | MR | Zbl

[14] Fokicheva V., Fomenko A., “Billiard systems as the models for the rigid body dynamics”, Studies in systems, decision and control, Advances in dynamical systems and control, 69, eds. V. Sadovnichii, M. Zgurovsky, Springer Int. Publ., Switzerland, 2016, 13–32 | DOI | MR

[15] Vedyushkina V. V., Fomenko A. T., “Integriruemye topologicheskie bilyardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Cer. matem., 81:4 (2017), 20–67 | MR | Zbl

[16] Kudryavtseva E. A., “Analog teoremy Liuvillya dlya integriruemykh gamiltonovykh sistem s nepolnymi potokami”, Dokl. RAN, 445:4 (2012), 383–385 | MR | Zbl

[17] Fokicheva V. V., “Topologicheskaya klassifikatsiya bilyardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | MR | Zbl